Kontakt-bak.ru

Контракт Бак ЛТД
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ремонт люминесцентных светильников с электронным балластом

Ремонт люминесцентных светильников с электронным балластом

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети

220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

Ремонт

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.

ЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС

Интересно то, что цена такого балласта недорога, всего 2 доллара. Для некоторых, покажется, что все-таки 2$ за балласт дороговато, но после вскрытия, оказалось, что в нем использованы компоненты в разы дороже общей цены балласта. Одна только пара мощных высоковольтных транзисторов 13009 уже стоят более доллара каждый.

Кстати, срок службы ЛДС зависит от способа запуска лампы. Из графиков видно, что холодный старт резко сокращает срок службы лампы.

Особенно в случае применения упрощенных электронных балластов, которые резко выводят ЛДС в рабочий режим. Да и способ питания лампы постоянным током также снижает срок службы. Незначительно — но всё-таки снижает. Примеры — на схемах ниже:

Простая схема электронного балласта (без микросхемы управления) почти мгновенно зажигает лампу. И для долговечности лампы это плохо. За короткое время нить накала не успевает разогреться, а высокое напряжение, приложенное между ее нитями, вырывает из нити накала требуемое количество электронов, необходимое для зажигания лампы, и этим разрушает накал, понижая его эмиссионную способность. Типовая принципиальная схема электронного балласта:

Поэтому рекомендуется выбирать белее серьёзную схему, с задержкой подачи питания (клик для увеличения):

В схеме купленного балласта особенно порадовал сетевой фильтр — чего нет в электронных трансформаторов для галогенных ламп. Фильтр оказался не простой: дроссель, варистор, предохранитель (не резистор как в ЭТ, а самый настоящий предохранитель), емкости перед и после дросселя. Дальше идет выпрямитель и два электролита — это не похоже на китайцев.

После уже идет стандартная, но в разы улучшенная схема двухтактого преобразователя. Тут сразу на глаза бросаются две вещи — теплоотводы транзисторов и применение более мощных резисторов в силовых цепях, обычно китайцам без разницы, где ток в цепи больше или меньше, они используют стандартные резисторы 0,25вт.

После генератора идут два дросселя, именно благодаря им происходит повышение напряжения, тут тоже все очень аккуратно, никаких претензий. Даже в мощных электронных трансформаторах китайские производители редко используют теплоотводы для транзисторов, но здесь как видим они есть, и не только есть, но и очень аккуратны — транзисторы прикручены через дополнительные изоляторы и через шайбы.

Читать еще:  Чем отличается постоянный ток от переменного

С обратной стороны плата тоже сияет аккуратностью монтажа, никаких острых выводов и испорченных дорожек, олово так-же не пожалели, все очень красиво и качественно.

Подключил устройство — оно отлично работает! Я уже начал думать, что сборку делали немцы, под суровым контролем, но тут вспомнил цену и почти поменял свое мнение о китайских производителях — молодцы парни, поработали на славу! Обзор подготовил АКА КАСЬЯН.

Ремонт люминесцентных светильников с электронным балластом

Власюк Н.П, г.Киев РА 9′ 2009
В статье описан электронный балласт настольного светильника МАХ-11W, приведена его
принципиальная схема, нарисованная автором из осмотра монтажной платы, описаны
особенности этой схемы, особое внимание автор уделил ремонту и доработке
(усовершенствованию) схемы.


Настольный светильник модели TL-222, представленный на рис. 1, китайского
производства. Его номинальное напряжение питания -220. 240 В, мощность 2-х
контактной U-образной, люминесцентной лампы — 11 Вт, питает ЛЦ лампу электронный
балласт (ЭБ), его частота преобразования — 37 кГц.
Электронный балласт светильника находится в его основании (рис. 1). Все элементы ЭБ
размещаются на монтажной плате размером 65X30 мм методом навесного монтажа (рис. 2;
3). Для изъятия платы с основания, необходимо предварительно снять крышку из подошвы
светильника.
Принципиальная схема электронного балласта (рис. 4)нарисована автором из осмотра его
монтажной платы. Все элементы на схеме обозначены также, как и на монтажной плате
обозначил их изготовитель. Некоторые из них не совпадают с принятыми в Украине
стандартами, но автор решил оставить обозначения оригинала, т.е. монтажной платы.
Все это сделано только для удобства работы ремонтников, для которых единое
обозначения на монтажной плате и принципиальной схеме позволяют быстро находить и
устранять неисправные элементы.
Схема ЭБ представляет собой маломощный преобразователь автогенераторного типа.
Принцип работы. Вначале переменное напряжение сети выпрямляется до 310 В. Далее, при
помощи автогенератора, основу которого составляют транзисторные ключи и ферритовый
тороидальный трансформатор, напряжение преобразуется в переменное частотой 37 кГц,
которое подается на последовательную цепочку, состоящую из конденсаторов С4, С5 и
дросселя L2 (рис. 4). Частота 37 кГц, является резонансной для вышеуказанной
последовательной цепи и на его элементах устанавливается максимальное напряжение,
которое и зажигает ЛЦ лампу. Зажигание производит напряжение на конденсаторе С5,
включенного параллельно ЛЦ лампе.
В качестве ключей ЭБ используются высоковольтные биполярные транзисторы n-р-n
проводимости типа MJE13001 (400 В; 0,2 А). Транзисторы выпускаются в корпусе ТО-92
разными производителями, каждый из которых устанавливает свою, цоколевку (рис. 4).
Транзисторы открываются поочередно импульсами положительной полярности,
(отрицательные — гасятся диодами D5 и D6) поступающими с обмоток 1 и 2 тороидального
ферритового трансформатора обозначенного китайскими производителями как L1 (рис. 2;
4). Более подробно о работе ЭБ автогенератороного типа описано в [ 1; 2; 3].
Но данная схема имеет свои особенности:

1. Последовательно в обмотку 2 трансформатора L1, подающего импульсы на базу
транзистора Q2, включен электролитический конденсатор С2 (10,0×50 В), его задача:
1. сдвинуть фазу напряжения с обмотки 2 трансформатора L1 и обеспечить запуск и
поочередную работу транзисторных ключей;
2. внутри цоколя ЛЦЛ, находятся конденсатор С5 и неоновая лампочка HL1 (рис. 4; 5;
6). HL1 включена параллельно С5, ее задача — задержать зажигание ЛЦ лампы на 0,5
сек.
HL1 зажигается раньше чем ЛЦ лампа, и этим замедляет скорость повышения напряжения
до порога зажигания ЛЦЛ. Когда ЛЦЛ зажигается, неоновая лампочка гаснет, т.к.
напряжение на зажжённой ЛЦЛ ниже напряжения горения HL1.
Ремонт ЭБ.
Ремонт ЭБ начинают с осмотра ее монтажной схемы, где выявляют поврежденные элементы,
которые не всегда изменяют свой внешний вид. Часто повреждены резисторы, значительно
увеличивают свое сопротивление, поэтому при ремонте необходимо проверять их
величину. Типичными причинами, приводящими к повреждению ЭБ, являются перегорания
нитей накала Л Ц ламп и скачки напряжения в электросети. Обе эти причины приводят к
повреждению одних и тех же элементов, а именно, транзисторных ключей Q1, Q2 и
резисторов R3, R4, R5, R6, причем, все они сгорают в комплекте. Транзисторы MJE13001
(400В; 0,2 А) не дефицитны, на киевском радиорынке они стоят 1,6 грн ($0,2). Как
исключение, можно применить отечественные КТ940А (300В; 0,1 А, в импульсе 0,3).
При подозрении в сгорании 2-х контактной U-образной ЛЦ лампы, проверить омметром
исправность её накалов не представляется возможным, т.к. внутри ее цоколя установлен
конденсатор. Поэтому существуют два способа проверки. Первый — измерителем емкости
подключиться к двум выводам ЛЦ лампы, при исправности накалов прибор покажет емкость
3,3 п, при обрыве — нечего не покажет. Второй способ применяют, если в первом
способе получили отрицательный результат. Для этого в торце цоколя ЛЦЛ просверливают
отверстие максимального диаметра (рис. 5), и вы получаете доступ до нитей накала.
Одни их выводы подключены на два штыри а другие, находятся внутри цоколя, и вы
можете омметром проверить исправность каждого накала. Кроме того, вы можете
проверить состояния соединения накала, конденсатора и неоновой лампочки (рис. 6). В
новой, только что купленной ЛЦ лампе модели PL-11W, которою автору этой статьи
пришлось ремонтировать, лампа не зажигалась, хотя ЭБ был исправным, т.к. его
работоспособность была проверена на другой лампе. При измерении ЛЦ лампы,
измерителем емкости он показал обрыв. Когда же автор, просверлив торец цоколя,
заглянул во внутрь, не поверил глазам — выводы (накалов конденсатора и неоновой
лампочки) которые должны были бы скручены согласно схемы и даже пропаяны, были
нахлестнуты друг на друга. Контакт между ними появлялся, если шевелить выводами, но
тут же контакт пропадал. Вынужден был через просверленное отверстие пинцетом
скручивать провода, в соответствии со схемой (рис. 5). Отсюда вывод — не покупайте
дешевых ЛЦ ламп. Стоимость U-образной ЛЦ лампы мощностью 11 Вт, на рынке, колеблется
в пределах 10. 25 грн ($1,2. 3,5). Частая причина повреждения ЭБ — скачки
напряжения электросети (особенно в сельской местности). ЭБ светильника, описанного в
этой статье, тоже повредился от скачка напряжения, от грозы.
У ЭБ китайского производства, более чем на 90% заполнившего рынок Украины, не
устанавливают защиты от превышения напряжения, мало того, у их ЭБ часто не
устанавливают даже обычный предохранитель, пример вышеописанный ЭБ рис. 2,3,4.



По задумке создателей описанного здесь ЭБ, роль предохранителя должна выполнить
тонкая дорожка на монтажной плате (рис. 3), но она, как показала практика, не
сгорает. Учитывая все это, для увеличения надежности работы данного ЭБ его следует
доработать. На рис. 4 пунктиром показаны элементы, которые следовало бы
дополнительно установить, чтобы защитить ЭБ от скачков напряжения. Если напряжение в
электросети повысится выше

250 В (по амплитуде выше -390 В), варистор (10N391K)
откроется и защитит схему от разрушения, в этом ему помогут дроссель L3 и гасящий
резистор R7. Если при этом ток в цепи превысит 1 А, то сгорит предохранитель, а
остальные элементы останутся целыми. Вместо варистора можно установить сопрессор
КЕ350СА (рис. 4). Если вы испытываете затруднения с приобретением дросселя L3, то
его можно не устанавливать.
Литература
1. Власюк Н.П. «Электронный балласт компактной люминесцентной лампы дневного света
фирмы DELUX». РА 2009/1, стр.43.
2. Власюк Н.П., «Электронный балласт для люминесцентного светильника до 40 Вт».
Электрик 2009/3-4, стр.52.
3. Власюк Н.П. «Люминесцентные лампы и их электронные балласты. В вопросах и
ответах», РА 2009/5, стр.34; 6; 7-8.

Оставлять комментарии могут только зарегистрированные пользователи

Ремонт люминесцентных светильников с электронным балластом

Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или ЭмПРА (дросель и стартер)



Принцип работы: при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  • Долгий пуск не менее 1 до 3 секунд (зависимость от износа лампы)
  • Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем детали станков, вращающихся синхронно с частотой сети- кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения двох ламп применяются стартеры на 127 Вольт, они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Читать еще:  Типы и применение магнитных пускателей

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

Устройство и виды электронного балласта для люминесцентных ламп

Электронный балласт выступает своеобразным пусковым механизмом, обеспечивающим стабильную работу люминесцентной лампы. Применение данного устройства актуально при недостаточной электрической нагрузке или при отсутствии ограничения в потреблении тока.

  1. Условия для подключения, запуска и горения люминесцентной лампы
  2. Основные характеристики балластов
  3. Преимущества и недостатки электронного балласта
  4. Рекомендации специалистов по выбору
  5. Подбор балласта по производителю

Условия для подключения, запуска и горения люминесцентной лампы

Люминесцентная лампочка представляет собой стеклянную колбу, заполненную инертным газом с добавлением незначительного количества ртути. На трубке присутствуют электроды, подающие напряжение определенной величины. Формируемое электрическое поле провоцирует появление разряда и, как следствие, тока.

Продуцируемое голубоватое свечение практически неощутимо для человека, поскольку относится к невидимому цветовому диапазону. Издаваемое ультрафиолетовое излучение попадает на покрытие лампы, содержащее соединения фосфора. В результате формируются лучи, находящиеся в видимой части спектра.

При включении люминесцентной лампы наблюдается лавинообразное увеличение тока, что провоцирует снижение сопротивления. Поэтому присоединить такого потребителя напрямую к сети невозможно. Для эффективной и длительной работы лампочки необходимо предупредить перегрев электродов. Для этого используется балластник или дроссель. Он продуцирует дополнительную нагрузку, когда ее не хватает в сети, что ограничивает величину тока.

Основные характеристики балластов

ПРА – пускорегулирующие аппараты – бывают двух типов: электронные и электромагнитные.

Электромагнитные устройства

Агрегат работает благодаря индуктивному сопротивлению дросселя. Его встраивают в схему последовательно лампе.

Для включения осветительного прибора также необходим стартер. Это небольшое устройство, напоминающее лампу, из категории газоразрядных. Внутри него находятся электроды из биметалла.

Стартер подключают к прибору параллельным способом.

При наличии электромагнитного балласта люминесцентная лампа работает по следующей схеме:

  1. При поступлении напряжения в стартере появляется разряд. В результате происходит разогрев электродов, вследствие чего они замыкаются.
  2. Рабочий ток увеличивается в несколько раз. Этот процесс ограничивает только внутреннее сопротивление дросселя.
  3. На фоне роста показателей тока разогреваются электроды лампы.
  4. При остывании стартера происходит размыкание цепи.
  5. Происходящие процессы приводят к появлению относительно высокого напряжения. В результате происходит «зажигание» источника внутри колбы.

Когда осветительный прибор перейдет в обычный режим работы, его напряжение будет существенно ниже сетевого, чего недостаточно для активации стартера. Поэтому он находится в разомкнутом виде и не влияет на функционирование лампы.

При наличии электромагнитных модулей на включение осветительных приборов уходит относительно много времени. В процессе эксплуатации это время постоянно увеличивается, что является существенным недостатком изделий. Такие источники света мигают в процессе работы, поэтому их не рекомендуется использовать в жилых помещениях. Также они довольно шумны и потребляют много электроэнергии.

Электронные агрегаты

Электронные пускорегулирующие аппараты (ЭПРА) являются своеобразными преобразователями напряжения. В схеме устройств отсутствует стартер. Чтобы понять, что такое ЭПРА для светодиодного или люминесцентного светильника, необходимо разобрать принцип его работы.

Магнитный балласт для компактных ламп (ПРА)

Перед подачей на катоды лампы зажигающего потенциала они подвергаются нагреву. При этом высокая частота напряжения, которое поступает к устройству, увеличивает его КПД и предупреждает мерцание. Также в процесс зажигания может быть задействован колебательная цепь. Она входит в резонанс до того момента, пока в колбе лампы отсутствует разряд. Это приводит к увеличению напряжения и к росту тока, что провоцирует разогрев катодов.

Балласты для компактных ламп

Сравнительно недавно на рынке появились люминесцентные лампы, адаптированные под стандартные плафоны. Это позволяет использовать их в качестве осветительных приборов в помещениях любого назначения без замены светильников.

Балласт компактных ламп размещается внутри патрона. Поэтому их ремонт теоретически возможен, но на практике не осуществляется.

Преимущества и недостатки электронного балласта

Электронный пускорегулирующий аппарат имеет ряд неоспоримых преимуществ:

  • Запуск лампы с электрическим балластом происходит очень быстро – на протяжении 1 секунды после включения.
  • ЭПРА генерирует частоту 38-50 кГц. Поэтому лампы с электронным балластом лишены таких негативных моментов, как мерцание и искажение изображения.
  • Срок службы приборов с электронным ПРА увеличивается в два раза.

Преимуществом электронного балласта для люминесцентных ламп называют простую схему его подключения. Также подобное устройство относится к категории энергоэффективных. При этом его КПД составляет 95%, что является довольно хорошим показателем.

Электронные балласты для ламп дневного света стоят дороже своих электромагнитных аналогов. Также их недостатком называют большую вероятность выхода из строя при скачках напряжения.

Рекомендации специалистов по выбору

При приобретении балластника обращают внимание на мощность модуля. Она должна соответствовать аналогичному показателю осветительного устройства. В противном случае прибор не сможет нормально функционировать.

При покупке балласта нельзя ориентироваться только на его стоимость. Электромагнитные приборы стоят дешевле, но они менее эффективны. Высокая стоимость электронных устройств нивелируется их отличными характеристиками.

Подбор балласта по производителю

При покупке дросселя следует ориентироваться на репутацию фирмы, которая его выпускает. Изделие китайского производства не всегда сможет оправдать ожидания пользователей. Специалисты рекомендуют покупать приборы от брендов, продукция которых проверена временем и подтверждена положительными отзывами клиентов.

Качественные балласты имеют крепкий корпус, изготовленный из пластика, устойчивого к деформациям и действию критических температур. Им присвоена степень защиты IP2. Это означает, что в прибор не могут проникнуть посторонние предметы, размер которых больше 12,5 мм.

Признаком хорошего балласта в лампе называют ее плавный запуск. Между включением прибора и появлением освещения всегда присутствует небольшая пауза. При ее отсутствии схема дросселя упрощена, что снижает срок эксплуатации лампы.

Популярные электромагнитные балласты

У пользователей большой популярностью пользуются электромагнитные дроссели, изготовленные фирмой E.Next. Производитель поставляет высококачественную продукцию, которая соответствует международным стандартам. На свои изделия компания предоставляет гарантию и обеспечивает сервисную поддержку.

Не меньшим спросом пользуется продукция известного европейского производителя электрооборудования Philips. Такие изделия позиционируются как энергоэффективные и надежные. При их использовании удается правильно регулировать нагрузку, что положительно сказывается на работе ламп.

Лучшие устройства электронного типа

Дроссели электронного типа относятся к современным изделиям с оптимальными функциями. Подобную продукцию выпускает немецкая компания Osram. Стоимость балластов от данной фирмы выше китайских аналогов, но ниже в сравнении с изделиями Philips и Vossloh-Schwabe.

Модули Horos относятся к категории бюджетных. Несмотря на невысокую стоимость, они имеют оптимальное КПД, характеризуются низким энергопотреблением. При этом балласты этой фирмы повышают качество работы осветительных устройств и устраняют задержку при включении. При их использовании можно полностью забыть о мерцании осветительных приборов.

Популярность на рынке имеет продукция молодой, но перспективной компании Feron. Она предоставляет покупателям изделия европейского качества по доступным ценам. Балласты Feron предохраняют лампы от перепадов напряжения, устраняют мерцание и экономят электроэнергию. Производимое приборами освещение мягкое и равномерное.

Схемы подключения люминесцентных ламп

С повышением цен на электроэнергию, приходится задумываться о более экономных светильниках. Одни из таких используют осветительные приборы дневного света. Схема подключения люминесцентных ламп не слишком сложна, так что даже без особых знаний электротехники можно разобраться.

Хорошая освещенность и линейные размеры — преимущества дневного света

Принцип работы люминесцентного светильника

В светильниках дневного света использована способность паров ртути излучать инфракрасные волны под воздействием электричества. В видимый для нашего глаза диапазон, это излучение переводят вещества-люминофоры.

Потому обычная люминесцентная лампа представляет собой стеклянную колбу, стенки которой покрыты люминофором. Внутри также находится некоторое количество ртути. Имеются два вольфрамовых электрода, обеспечивающих эмиссию электронов и разогрев (испарение) ртути. Колба заполнена инертным газом, чаще всего — аргоном. Свечение начинается при наличии паров ртути, разогретых до определенной температуры.

Принципиальное устройство люминесцентной лампы дневного света

Но для испарения ртути обычного напряжения сети недостаточно. Для начала работы параллельно с электродами включают пуско-регулирующие устройства (сокращенно ПРА). Их задача — создать кратковременный скачок напряжения, необходимый для начала свечения, а затем ограничивать рабочий ток, не допуская его неконтролируемого возрастания. Эти устройства — ПРА — бывают двух видов — электромагнитные и электронные. Соответственно, схемы отличаются.

Схемы со стартером

Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.

Схема подключения люминесцентных ламп со стартером

Вот как она работает:

  • При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера.
  • Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом.
  • Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель.
  • За счет резкого скачка очень быстро разогреваются электроды.
  • Биметаллическая пластина стартера остывает и разрывает контакт.
  • В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.

Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.

Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА . Часто это устройство называют просто дросселем.

Недостатков у этой схемы подключения люминесцентной лампы достаточно:

  • пульсирующий свет, который негативно сказывается на глазах и они быстро устают;
  • шумы при пуске и работе;
  • невозможность запуска при пониженной температуре;
  • длительный старт — от момента включения проходит порядка 1-3 секунд.

Две трубки и два дроссели

В светильниках на две лампы дневного света два комплекта подключаются последовательно:

  • фазный провод подается на вход дросселя;
  • с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1;
  • со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);

Так же подключается вторая трубка: сначала дроссель, с него — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.

Схема подключения на две лампы дневного света

Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.

Схема подключения двух ламп от одного дросселя (с двумя стартерами)

Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.

Электронный балласт

Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.

Один из электронных балластов — ЭПРА

Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.

На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:

  • первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
  • третий и четвертый подаете на другую пару;
  • ко входу подаете питание.

Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).

ЭПРА для двух ламп дневного света

Преимущества электронных балластников описаны в видео.

Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.

Это тоже люминесцентные лампы, только форма другая

sibay-rb.ru

А у вас, мигает настольная лампа ? У меня есть светильник местного освещения, а точнее настольная лампа. Постоянно её пользуюсь и всё бы ничего, но применяемая лампа дневного света на 11 вт,временами, ну никак не хочет зажигаться, а вместо этого, просто постоянно мигает.Как я понимаю, лампа не может выйти на нормальный режим работы. Нужна . Чтобы её зажечь, вначале нужно подать повышенное напряжение на электроды,если этого нет вот и мигает настольная лампа .В вилке нашей настольной лампы установлен дроссель,он как раз это и делает вместе со стартером.

В больших лампах стартер ставиться отдельно, в моём случае находится в цоколе лампы. Однако не в нём, не в лампе или дросселе, а плавающем напряжении сети и старой электрической проводке в доме. Но, избавиться от того, что мигает настольная лампа всё таки можно,если сделать . Сейчас многие используют энергосберегающие лампы, в разборном цоколе этой лампы находится электронная схема, которая называется электронный балласт. По моему опыту часто выгорает нить накала самой лампы, а электроника способна работать и дальше. Вот это я и для доработки. Важно только чтобы мощности настольной и энергосберегающей ламп совпадали или отличались не значительно. Например для 11вт, на одной из доработанных ламп установил электронику от 9 ватной энергосберегающей. Но идеальный вариант один к одному.Что необходимо сделать для доработки в настольной лампе:

Всё… больше подобных проблему меня не было,

Настольные светильники — устройства, имеющие свою специфику, светильники с люминесцентными лампами — особенно. Светильник располагается не так далеко от глаз, как люстра, поэтому мерцание лампы при таком близком расположении особенно заметно. У светильников с лампами накаливания такое неудобство отсутствует, у светильников же с люминесцентными лампами — наоборот ярко выражено, что неудивительно, потому что собраны они по стандартной дроссельной схеме со стартёром.

Было бы неплохо заменить дроссельную схему включения лампы в настольном светильнике на электронную (ЭПРА), например, от сгоревшей энергосберегающей лампы, тем более, что во многих светильниках для этого имеется достаточно места. Стандартный дроссель при этом становится ненужным и извлекается из светильника.


Ещё одной особенностью, которую необходимо учесть, является тот факт, что настольные лампы включаются лишь по мере необходимости, то есть подразумеваются частые включения и выключения.


А это, как известно, значительно сокращает срок службы нитей накала ламп в стандартных ЭПРА без мягкого запуска. Из статьи про переделку балластов мы уже знаем, что любой балласт можно дополнить термистором и значительно увеличить срок службы нитей накала лампы. Этим обязательно необходимо воспользоваться при переделке светильника.


В светильниках чаще всего используются лампы мощностью 9 и 11 ватт, поэтому идеально подойдёт ЭПРА от энергосберегающей лампы мощностью 13Вт. Лампа для переделанного светильника должна быть заранее подготовлена: необходимо убрать стартёр, который находится в пластмассовом цоколе и заменить его на конденсатор, выпаянный с платы электронного балласта. Схемы электронных балластов от энергосберегающих ламп можно посмотреть .


На фотографии выше виден дисковый NTC-термистор, который предохраняет нити лампы от броска тока в момент включения. Лампа в таком светильнике с переделанным ЭПРА не перегорела за несколько лет. В стандартном дроссельном включении лампы в светильниках перегорают раз в полгода.

При установке ЭПРА в корпус лампы необходимо тщательно проверить изоляцию всех частей, так как они находятся под сетевым напряжением.


Переделанный светильник светит ярко (т.к. мощность лампы получается чуть выше), не гудит и не мерцает.

UP 14.02.2011 Ещё несколько фотографий.

Переделываем лампу. На фото — снятый пластмассовый Т-образный цоколь, и отсоединённые стартёр и конденсатор. Эти детали больше не понадобятся.


Между нитями лампы припаивается резонансный конденсатор с платы ЭПРА, а также PTC-термистор, если таковой имелся на плате.


Так выглядит балласт от энергосберегающей лампы (ЭПРА):


Вариант 1: Установка ЭПРА на месте штатного дросселя лампы. Недостаток метода — необходима установка нового выключателя поблизости.

Вариант 2: Установка ЭПРА ближе к лампе. Здесь можно использовать штатный выключатель.


На фото видно, что в балласт

Электронный балласт для люминесцентных ламп.

Люминесцентные лампы нельзя подключать к электросети напрямую. Низкочастотное напряжение электросети не позволяет стабильно функционировать люминесцентному светильнику. Ситуацию спасает балласт, способный получить высокочастотное напряжение.

Для чего нужен балласт

Возрастание тока газового разряда лампы вызывает стремительное уменьшение сопротивления. Возникает угроза перегрева и выхода из строя электродов. Для ее предотвращения подключают дополнительную нагрузку, балластник. Реже употребляется название дроссель. Применяют электромагнитные и электронные типы балластников.

У электромагнитного балласта компоновка классическая трансформаторная: пластины из металла, медный провод. Запускает его стартер.

Компоненты балластника электронного типа – микросхемы, диоды, транзисторы и другие радиоэлектронные элементы. В стартере нет необходимости. Электронное пускорегулирующее устройство (ЭПРА) преобразует напряжение сети с частотой 50 Гц в высокочастотное, запускает и поддерживает рабочий режим люминесцентных ламп, обеспечивает:

  • стабильность работы;
  • длительный срок эксплуатации;
  • возможность регулирования яркости с помощью дополнительного устройства.

ЭПРА имеют следующие преимущества перед электромагнитными балластами:

  • малый вес и габаритные размеры;
  • быстрый и плавный старт;
  • нет мерцания, шума, потому что используются высокие частоты, измеряемые десятками кГц;
  • значительно уменьшается нагрев;
  • значительный коэффициент мощности (до 0,95);
  • повышенная безопасность, длительный срок эксплуатации.

Схемы электронных балластов для люминесцентных ламп

  • помехоподавляюший фильтр (ИРП);
  • диодный мост для выпрямления и сглаживания напряжения;
  • полумостовой инвертор, отлично подходящий для газоразрядных ламп;
  • согласующий блок;
  • управляющий блок.

При работе балласт для люминесцентных ламп создает высокочастотные помехи, для препятствования прохождению их в сеть предназначен фильтр индустриальной помехи. Выпрямитель обеспечивает балластник постоянным током и корректирует коэффициент мощности. Изменение постоянного тока в переменный с высокой частотой осуществляет инвертор. Согласующий блок – это последовательный колебательный контур на дросселе и резонансном конденсаторе, параллельно присоединенном к лампе. Управляющий блок или контроллер управляет в режимах аварийной блокировки, пуска, поддержания работы, зажигания.

Выбирая схемы электронных балластов для люминесцентных ламп, следует внимательнее относиться к следующему:

  1. Мощности балласта и лампы должны совпадать.
  2. Коэффициент мощности показывает эффективность использования сетевого напряжения. Современные ЭПРА имеют показатель 0,95÷0,97.
  3. Потеря мощности.
  4. Входное напряжение.
  5. Пиковый ток.
  6. Количество присоединяемых лампочек.

Как изготовить светильник своими руками

Собрать самостоятельно люминесцентный светильник можно, имея минимальные знания в электротехнике. Для изготовления люминесцентных ламп своими руками понадобится:

  1. Люминесцентная лампа, одна или несколько в зависимости от замысла.
  2. Корпус. Его можно купить или изготовить из подручных не воспламеняющихся материалов, использовать подходящую по размерам коробку, старый корпус.
  3. Электронное пускорегулирующее устройство (ЭПРА).
  4. Патроны G13, на одну лампу берут 2 патрона.
  5. Провод медный моножильный с площадью сечения 0,2÷0,5 мм².
  6. Крепеж (винтики, гаечки, шайбы) для закрепления элементов светильника.

Последовательность действий следующая:

  1. Закрепить патроны в соответствии с длиной и количеством ламп.
  2. Разместить ЭПРА так, чтобы получаемое количество тепла при работающем светильнике было минимальным. Такая область находится ближе к центру.
  3. Подключить патроны к ЭПРА согласно схеме, находящейся на корпусе устройства с помощью проводов необходимой длины, зачищенных от изоляции на 1 см от края. Провода в патрон просто вставляются до упора, крепятся с помощью пластинчатой пружины.
  4. Закрепить светильник на потолке или стене, подключить к сети.

Плафон из прозрачного материала для таких светильников необязателен, но для защиты от повреждений лучше его предусмотреть.

Определение поломки и ремонтные работы

Поломки электронного балластника возникают по следующим причинам:

  1. Вышел из строя предохранитель из-за скачка сетевого напряжения выше 220В.
  2. Пришла в негодность одна или несколько деталей. Это определяется по характерному почернению. Проверяют тестером.

В зависимости от причины поломки дефект устраняют. Перегоревший предохранитель заменяют. Если выявлена непригодность элемента схемы, определяют его стоимость. Если затраты на ремонт электронного балласта сопоставимы с ценой нового, ремонт балласта нецелесообразен.

Электронное пускорегулирующее устройство обеспечивает стабильность и длительный срок эксплуатации люминесцентного светильника. Основные его преимущества: легкость, компактность, комфортность эксплуатации светильника, его экономичность.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector