Kontakt-bak.ru

Контракт Бак ЛТД
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы электродвигателя постоянного тока

Приводы и двигатели постоянного тока

Принцип работы

Двигатели постоянного тока

На статоре находится индукторная обмотка (обмотка возбуждения), на которую подаётся постоянный ток — в результате создаётся постоянное магнитное поле (поле возбуждения). В двигателях с постоянными магнитами поле возбуждения создаётся постоянными магнитами.

В обмотку ротора (якорная обмотка) также подаётся постоянный ток, на который со стороны магнитного поля статора действует сила Ампера — создаётся вращающий момент, который поворачивает ротор на 90 электрических градусов, после чего щёточно-коллекторный узел коммутирует обмотки ротора – вращение продолжается.

По способу возбуждения двигатели постоянного тока делятся на четыре группы:

  • С независимым возбуждением — обмотка возбуждения питается от независимого источника
  • С параллельным возбуждением — обмотка возбуждения включается параллельно источнику питания обмотки якоря
  • С последовательным возбуждением — обмотка возбуждения включена последовательно с обмоткой якоря
  • Со смешанным возбуждением — у двигателя есть две обмотки: параллельная и последовательная.

Пуск двигателя постоянного тока

При прямом пуске ток якоря может на порядок превышать номинальный, поэтому при пуске в цепь якоря вводится пусковое сопротивление пусковой реостат. Для плавного пуска реостат делают ступенчатым — в первый момент включаются все ступени (максимальное сопротивление), по мере разгона двигателя растёт противо-ЭДС, ток якоря уменьшается — ступени выключаются одна за другой.

Регулирование скорости вращения двигателя постоянного тока

  • Скорость ниже номинальной регулируется напряжением на якоре (мощность при этом пропорциональна скорости, момент неизменен)
  • Скорость выше номинальной регулируется током обмотки возбуждения — чем слабее поле возбуждения, тем выше скорость (момент падает при постоянной мощности)

Регулирование питания якоря и обмотки возбуждения осуществляется с помощью тиристорных преобразователей (приводов постоянного тока).

Преимущества и недостатки двигателей постоянного тока

Преимущества:
  • Практически линейные характеристики двигателя:
    • механическая характеристика (зависимость частоты от момента)
    • регулировочная характеристика (зависимость частоты от напряжения якоря)
  • Просто регулировать частоту вращения в широких пределах
  • Большой пусковой момент
  • Компактный размер.
Недостатки:
  • Дополнительные расходы на профилактическое обслуживание коллекторно-щёточных узлов
  • Ограниченный срок службы из-за износа коллектора
  • Дороже асинхронных двигателей.

Как выбрать

Выбор двигателя постоянного тока

  • Высота оси
  • Номинальное напряжение якоря
  • Номинальное напряжение возбуждения
  • Номинальная частота вращения
  • Номинальная мощность
  • Номинальный момент
  • Номинальный ток якоря
  • Мощность возбуждения
  • Максимальная частота вращения при понижении поля (выше этой скорости падает мощность)
  • Предельно допустимая рабочая скорость (выше этой скорости начинается механическое разрушение)
  • КПД
  • Момент инерции
  • Степень защиты IP
  • Степень виброустойчивости (прессы и т.п.)
  • Класс изоляции (для работы от преобразователя не ниже F)
  • Температура окружающей среды (для работы при отрицательных температурах в условиях русской зимы требуется специальное исполнение: смазка, вал из специальной стали и т.п.)
  • Высота установки над уровнем моря (выше 1000 метров падают характеристики)
  • Конструктивное исполнение по способу монтажа электродвигателей
    • Маслоуплотнённый фланец для присоединения редуктора
  • Положение клеммной коробки (справа, сверху и т.д.)
  • Тип принудительного охлаждения:
    • Конвекционное: воздушный фильтр, контроль расхода воздуха, встроенный (направление обдува) или внешний (подключение труб) вентилятор
    • Через теплообменник
  • Классификация методов охлаждения электрических двигателей
  • Окраска
  • Подшипники
    • Качения (радиально-упорные)
    • Усиленные подшипники для повышенных радиальных нагрузок на валу
    • С пополнением смазки
    • Для подключения редуктора
  • Вал двигателя
    • Со шпоночным пазом
  • Датчик скорости
    • Тахогенератор
    • Энкодер
  • Тормоз
  • Контроль износа щёток
    • Окошко для визуального контроля
    • Микропереключатель ограничения остаточной длины щёток
  • Контроль нагрева двигателя
    • Термисторная защита – контроль граничных значений (предупреждение, отключение)
    • Непрерывный контроль температуры при помощи датчика KTY
  • Подогрев остановленного двигателя (против образования конденсата)
  • Уровень шума.

Выбор преобразователя постоянного тока

  • Режим работы:
    • Одноквадрантный (1Q) — нереверсивный
    • Четырёхквадрантный (4Q) — реверсивный.
    Выход:
  • Номинальное постоянное напряжение (якоря двигателя)
  • Номинальный постоянный ток якоря
  • Перегрузочная способность по току
  • Номинальная мощность
  • Мощность потерь (рассеиваемая мощность) при номинальном токе
  • Номинальное постоянное напряжение обмотки возбуждения (напряжение поля)
  • Номинальный постоянный ток обмотки возбуждения (ток поля)
  • Панель оператора (съёмная, хранение параметров, поддержка русского языка)
  • Коммуникационный интерфейс для обмена данными с PLC, HMI (PROFIBUS и др.)
  • Точность регулирования
  • Встроенные ПИД-регуляторы
  • Встроенные функции логического контроллера
  • Сигнальные (дискретные и аналоговые) входы-выходы.

Электродвигатель постоянного тока. Принцип действия и устройство.

На рис. 1-1 представлена простейший электродвигатель постоянного тока, а на рис. 1-2 дано его схематическое изображение в осевом направлении. Неподвижная часть двигателя, называемая индуктор, состоит из полюсов и круглого стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в электродвигателе основного магнитного потока. Индуктор изображенной на рис. 1-1 имеет два полюса 1 (ярмо индуктора на рис. 1-1 не показано).
Вращающаяся часть электродвигателя состоит из укрепленных на валу цилиндрического якоря 2 и коллектора. 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанном на рис. 1-1 и 1-2 простейшем электродвигателе имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор налегают две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.
Основной магнитный поток в нормальных электродвигателях постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов.

Рис. 1-1. Простейший электродвигатель постоянного тока
Рис. 1-2. Работа простейшего электродвигателя постоянного тока в режиме генератора (а) и двигателя (б).

Генератор постоянного тока.

Рассмотрим сначала работу электродвигателя в режиме генератора.

Предположим, что якорь электродвигателя (рис. 1-1 и 1-2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется Э. Д. С., направление которой может быть определено по «правилу правой руки» и показано на рис. 1-1 и 1-2, а. Поскольку поток полюсов предполагается неизменным, то эта Э. Д. С. индуктируется только вследствие вращения якоря и называется Э. Д. С. вращения. В обоих проводниках вследствие симметрии индуктируются одинаковые Э. Д. С., которые по контуру витка складываются. Частота Э. Д. С. f в двухполюсном электродвигателе равна скорости вращения якоря n, выраженной в оборотах в секунду:
f = n,
а в общем случае, когда машина имеет р пар полюсов с чередующейся полярностью:
f = pn

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

Двигатель постоянного тока.

Рассматриваемая простейшая машина может работать также двигателем, если к обмотке ее якоря подвести постоянный ток от внешнего источника. При этом на проводники обмотки якоря будут действовать электромагнитные силы и возникнет электромагнитный момент. Величины силы и момента определяются как и для генератора. При достаточной величине Мэм якорь электродвигателя придет во вращение и будет развивать механическую мощность. Момент Мэм при этом является движущим и действует в направлении вращения.
Если мы желаем, чтобы при той же полярности полюсов направления вращения генератора (рис. 1-2, а) и двигателя (рис. 1-2, б) были одинаковы, то направление действия а следовательно, и направление тока у двигателя должны быть обратными по сравнению с генератором (рис. 1-2, б).
В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве механического инвертора тока.
Принцип обратимости. Из изложенного выше следует, что каждый электродвигателя постоянного тока может работать как в режиме генератора, так и в режиме двигателя. Такое свойство присуще всем типам вращающихся электрических машин и называется обратимостью.
Для перехода машины постоянного тока из режима генератора в режим двигателя и обратно, при неизменной полярности полюсов и щеток и при неизменном направлении вращения требуется только изменение направления тока в обмотке якоря.
Поэтому такой переход может осуществляться весьма просто и в определенных условиях даже автоматически.
Аналогичным образом может происходить изменение режима работы также в электродвигателях переменного тока.

Еженедельные отправки по всей России:

Контакты отдела продаж:

Телефон/факс:

+7 (4922) 53-95-25
+7 (4922) 53-96-26
+7 (4922) 53-95-40
Электронная почта:
info@motors33.ru

Принцип работы коллекторного двигателя постоянного тока

Простые и надежные, коллекторные двигатели постоянного тока обеспечивают высокий момент на небольших скоростях и являются хорошей базой для создания приводов и готовых сервосистем с обратной связью.

Коллекторные двигатели постоянного тока — рабочие лошадки промышленности. Они простые, надежные, экономичные. Эти двигатели обеспечивают хорошую регулировку на малых оборотах и, что более важно, высокий крутящий момент на низких скоростях. В связи с этим, при добавлении закрытого контура обратной связи, они могут успешно использоваться при решении задач управления движением.

Давайте взглянем ближе на базовую теорию коллекторных двигателей постоянного тока. Для более удобного и легкого восприятия статья разбита на две части. В этой первой части рассмотрены базовые законы электродинамики, которые лежат в основе работы коллекторных двигателей постоянного тока.

Простая модель — принцип двигателя постоянного тока

Закон Ампера говорит нам о том, что проводник с током генерирует магнитное поле (B-поле), ориентацию которого можно определить по правилу правой руки: если расположить правую руку так, чтобы большой палец указывал вдоль проводника по направлению тока, и согнуть остальные пальцы, то они будут огибать проводник в направлении линий магнитной поля (см. рис.1).

Рис.1а. Магнитное поле проводника с током.

Если вместо одиночного витка проводника мы используем многовитковую катушку (соленоид), поля, генерируемые витками, складываются в более сильное, равномерно распределённое однородное магнитное поле. Линии этого поля ориентированы практически параллельно центральной оси соленоида. Таким образом работают электромагниты.

Рис. 1б. Магнитное поле соленоида.

В простейшем варианте, поворотные двигатели постоянного тока состоят из неподвижного элемента (статора) и вращающегося элемента (ротора — якоря двигателя постоянного тока). И хотя на практике существует множество вариаций, включая вращающийся статор и неподвижный якорь, для упрощения понимания в данной статье мы будем подразумевать цилиндрический внутренний ротор и внешний статор, генерирующий магнитное поле за счет постоянных магнитов. Мы рассмотрим электродвигатель, приводимый в движение за счет взаимного воздействия полей, генерируемых ротором и статором.

От теории к практике — как создать электродвигатель

Каким образом применить имеющиеся знания к созданию реального двигателя? Давайте начнем с простого примера — двухполюсного коллекторного двигателя постоянного тока. Такой мотор включает в себя ротор (якорь) и статор, сформированным двумя разнополюсными постоянными магнитами. Якорь состоит из свободно вращающейся перекладины (рамки), установленной на центральный стержень, который в свою очередь установлен на подшипниках, прикрепленных к корпусу двигателя. Вместо рассмотренного ранее одиночного витка возьмем проводник и обернем его вокруг якоря несколько раз, чтобы сформировать обмотку с обеих сторон, но в разных направлениях. В результате при подключении проводника к источнику питания две обмотки создадут электромагнитные поля с противоположными полярностями.

Читать еще:  Кнопочный пост с пускателем

Магнит можно рассматривать как собрание дипольных моментов, направленных в одну сторону. Подобная модель применима как к постоянным магнитам, так и электромагнитам. Магнитное поле вызывает усилие, направленное по вектору дипольных моментов соленоида. Другими словами, когда мы помещаем якорь в магнитное поле, индуцированное магнитами статора, это поле создает усилие и генерирует момент, вызывающий вращение якоря относительно своей центральной оси.

Рис.2. Схематичное изображение двухполюсного двигателя постоянного тока.

Приведенная простая модель имеет некоторые проблемы. Хотя сила остается постоянной при условии неизменности силы тока и магнитного поля, момент меняется как функция угла поворота θ. Так как якорь двигателя стремится повернуться таким образом, чтобы выровнять полюса обмотки в соответствии с полюсами статора, значение угла θ и sin(θ) падает, в конечном счете приводя момент к нулю. С практической стороны это означает, что якорь останавливается, когда его полюса выравниваются с полюсами магнитов статора. Имея существеннную массу, якорь может проскользнуть положение идеального выравнивания полюсов, но в этом случае образуется отрицательный момент, который вызовет движение в обратную сторону. Возникнет колебание вокруг положения равновесия, и в конечном итоге остановка.

В любом случае, запомним, что направление силы, возникающей по действием магнитного поля, будет определяться направлением тока. Это означает, что реверсирование направления тока в проводнике вызовет реверс действия силы и позволит магнитному полю опять создать момент. Если мы сможем переключить направление тока в момент, когда виток достигнет перпендикулярного положения, то сразу после того, как он отклонится далее под действием силы инерции мимо перпендикулярного положения, поле статора заставит виток поворачиваться далее, генерируя крутящий момент (рис.2). Таков принцип работы двигателя постоянного тока.

Чтобы заставить работать подобную модель, мы должны найти способ изменять направление тока в проводнике. В случае двигателя постоянного тока мы можем осуществить такое преключение добавив в электрический контур коммутатор (преключатель, или коллекторный узел), который будет переключать направление тока. Такой коммутатор состоит из разомкнутого кольца, закрепленного на оси якоря таким образом, чтобы оно двигалось вместе с осью якоря и соединялось с обмотками двигателя (рис.3). Чтобы подключить коммутатор к источнику питания используются щетки. Фактически эти элементы не являются щетками, это пластины из проводящего материала (в большинстве случаев графитовые, но иногда используются также и золотые или серебряные). Эти пластины закрепляются напротив коммутатора с помощью плоских пружин. При повороте якоря двигателя направление тока изменяется на противоположное через каждые 180°, позволяя двигателю продолжать вращение.

Рис.3. Коллектор двигателя постоянного тока

Во второй части статьи «Коллекторные двигатели постоянного тока — реализация моделей» рассмотрены варианты моделей двигателей — их преимущества и недостатки в зависимости от конструктивных исполнений. В частности, рассмотрены отличия двухполюсного и трехполюсного коллекторных двигателей.

Электродвигатели постоянного тока. Устройство и работа. Виды

Электрические двигатели, приводящиеся в движение путем воздействия постоянного тока, применяются значительно реже, по сравнению с двигателями, работающими от переменного тока. В бытовых условиях электродвигатели постоянного тока используются в детских игрушках, с питанием от обычных батареек с постоянным током. На производстве электродвигатели постоянного тока приводят в действие различные агрегаты и оборудование. Питание для них подводится от мощных батарей аккумуляторов.

Устройство и принцип работы

Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.

Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.

Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.

Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.

Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.

Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.

Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.

Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.

Виды
Электродвигатели постоянного тока разделяют по характеру возбуждения:
Независимое возбуждение

При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.

Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.

Параллельное возбуждение

Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.

Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.

Последовательное возбуждение

В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.

Смешанное возбуждение

Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.

Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.

Особенности эксплуатации

Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.

Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.

Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.

Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.

Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.

На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.

Принцип действия электродвигателя постоянного тока

Электрический двигатель – неоценимое изобретение человека. Благодаря этому устройству наша цивилизация за последние сотни лет ушла далеко вперёд. Это настолько важно, что принцип работы электродвигателя изучают ещё со школьной скамьи. Круговое вращение электроприводного вала легко трансформируется во все остальные виды движения. Поэтому любой станок, созданный для облегчения труда и сокращения времени на изготовление продукции, можно приспособить под выполнение множества задач. Каков же принцип действия электродвигателя, как он работает и каково его устройство – обо всём этом понятным языком рассказывается в представленной статье.

Как работает двигатель постоянного тока

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта). При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Читать еще:  Распределительный щиток

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Принцип действия современных электродвигателей

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

Электродвигатели постоянного тока YALU: принцип работы и широкие возможности применения

Среди изготовителей электродвигателей постоянного тока (ДПТ) особое место занимает компания YALU, одна из лидеров в своей сфере. ДПТ — незаменимая запасная часть для электрического транспорта и промышленных приводов, требующих точной регулировки частоты вращения. Сегодня на рынке представлен широкий выбор ДПТ с разнообразными характеристиками, позволяющими подобрать агрегат вне зависимости от поставленных задач.

В чём плюсы электродвигателей YALU

Основная функция электродвигателей постоянного тока — преобразование электрической энергии постоянного тока в механическое непрерывное угловое вращение. В отличие от двигателей переменного тока они обладают возможностью регулировки частоты оборотов в большом диапазоне.

В основе работы ДПТ лежит явление электромагнитной индукции, когда на проводник в магнитном поле действует сила Ампера, вызывающая возникновение крутящего момента, который определяется током, проходящим через обмотки двигателя. Этот момент и используют в практических целях для вращения насосов, вентиляторов, колёс, компрессоров и пр.

Основными деталями ДПТ выступают статор (неподвижная часть) и ротор (вращающаяся часть). Скорость вращения определяется приложенным напряжением постоянного тока. Она может варьироваться от нескольких до тысячи оборотов в минуту. Это расширяет возможности применения ДПТ, которые можно использовать в робототехнике, электронике, автомобилестроении.

Набор для «электрификации» велотранспорта

Электродвигатели YALU обладают всеми преимуществами, которые свойственны ДПТ.

К плюсам агрегатов относятся:

  • компактные размеры, особенно у двигателей на постоянных магнитах;
  • быстрый запуск за счёт большой величины пускового момента;
  • простая эксплуатация, связанная с практически линейными регулировочными и механическими характеристиками;
  • плавная регулировка скорости вращения вала;
  • возможность применения не только в качестве двигателя, но и как генератора тока.

Важной характеристикой ДПТ выступает мощность, от которой зависит КПД агрегата. Для слабых двигателей КПД составляет около 40 %, а для более мощных (1 МВт) может достигать 96 %.

Сферы применения электродвигателей постоянного тока

Электродвигатели постоянного тока — наиболее часто используемые приводы для создания непрерывного движения с регулируемой скоростью вращения. Они могут приводить в движение транспортные средства: от игрушечных автомобилей-аттракционов с аккумулятором 12 В до электричек и троллейбусов, где точность регулировки оборотов наглядно демонстрируется плавным разгоном техники. Агрегаты на постоянных магнитах имеют особенно большую плотность мощности, поэтому часто используются в оборонительной отрасли.

Электрический транспорт — одна из самых распространённых сфер применения ДПТ. На них основана работа:

  • метро,
  • трамваев,
  • троллейбусов,
  • электровозов,
  • пригородных электрических дорог.

Другую сферу применения ДПТ составляют подъёмные механизмы, включая электрические подъёмные краны. Ввиду отсутствия жёстких ограничений по размерам электродвигатели часто остаются незамеченными. Их используют в автомобилестроении: на грузовом транспорте устанавливаются агрегаты с рабочим напряжением от 24 В, а на легковом — 12 В. Здесь ДПТ работают от генератора или АКБ и отвечают за разные функции:

  • поднятие-опускание стёкол;
  • поддержание в салоне заданной температуры;
  • позиционирование сидений;
  • управление зеркалами и пр.

Использование электродвигателя на постоянном токе для автоматизированной очистки стёкол

Для применения ДПТ в качестве генератора тока необходимо поменять полярность питания постоянного тока, подаваемого на соединения агрегата. Т. е., нужно изменить направление тока в якоре или обмотке возбуждения. В результате вал будет вращаться в противоположном направлении. Самым простым и недорогим способом управления вращением вала остаются переключатели.

При использовании ДПТ учитывается одна из важнейших характеристик — способ подключения обмотки возбуждения:

  • независимый,
  • параллельный,
  • последовательный,
  • смешанный.

В ДПТ с последовательной схемой возбуждения при необходимости можно уменьшить скорость вращения в 2 раза. За это отвечает переменный резистор, который при необходимости включают в цепь возбуждающей обмотки реостата. В двигателях с параллельной схемой для уменьшения оборотов в 2 раз тоже применяют реостат, а для повышения в 4 раза подключают сопротивление.

В двигателях с параллельной схемой для уменьшения оборотов в 2 раз тоже применяют реостат, а для повышения в 4 раза подключают сопротивление

Широкие возможности с электродвигателями постоянного тока

Ввиду разнообразия ассортимента сегодня возможны стабильные поставки электродвигателей постоянного тока YALU для самодвижущейся техники, электротранспорта и других видов техники и промышленного оборудования. В зависимости от задач можно подобрать один мотор или все комплектующие, необходимые для проекта.

Среди ДПТ представлены агрегаты, рассчитанные на напряжение от 12 до 48 В и силу тока до 39 А. Если вам необходима консультация по поводу выбора, обратитесь к представителям «ВКС» через онлайн-форму или свяжитесь по телефону.

T-T Electric

Электродвигатель постоянного тока: схема, устройство, принцип работы

Электродвигатель постоянного тока — проблема выбора
Электродвигатель постоянного тока, как известно, работает на основе использования принципа магнитной индукции. При этом основное и важнейшее преимущество электродвигателя постоянного тока заключается в возможности плавной регулировки в нем скорости вращения в различных диапазонах с высокой точностью.

Вследствие этого данный тип электродвигателя приобрел широкое распространение на рельсовом и безрельсовом электрифицированном транспорте, в подъемных кранах, на прокатных станах, в устройствах автоматики и т. п. И, хотя сфера распространения электродвигателя постоянного ока выглядит достаточно внушительной, нельзя не заметить, что данный тип электродвигателя применяют только там, где применение другого типа двигателя — переменного тока невозможно или крайне нецелесообразно. Отсюда неудивительно, что в среднем, на каждые 70 двигателей переменного тока сегодня приходится всего лишь 1 электродвигатель постоянного тока.

Читать еще:  Инструмент для электрика

Этот момент, кстати, так же резко снижает и выбор производителей данного типа электродвигателей на мировом рынке. Тем более, если мы говорим о качественном выборе. И здесь выбор электродвигателей постоянного тока от такого известного европейского производителя как T-T Electric может оказаться порой реально безальтернативным.

Разумеется, лишь в том случае, если Вам нужен именно электродвигатель постоянного тока. Но как понять, что этот именно тот выбор? Как же здесь не ошибиться?

Для этого давайте рассмотрим устройство электродвигателя постоянного тока, проанализируем схему электродвигателя постоянного тока и принципы его работы.

Отличия электродвигателей постоянного и переменного тока

На сегодняшний день фактом является то, что довольно длительное противостояние двух видов тока, развернувшееся в мировой экономике и производстве в конце XIX — начале ХХ веков, привело к практически безоговорочной победе двигателя переменного тока и постепенной капитуляции электродвигателя постоянного тока.

Причины здесь многогранны и связаны как отчасти с относительной дороговизной электродвигателя постоянного тока, необходимостью его постоянного ремонта, так и с факторами прогресса самих «переменников» активно отвоевывающих все новые и новые ниши у электродвигателя постоянного тока. За электродвигатели переменного тока говорит простота их технологичной конструкции, высокие энергетическим показателям, надежность и стабильность работы.

Однако электродвигатели постоянного тока до сих пор также активно совершенствуются, здесь все также разрабатываются новые модели. И они все еще активно используются на производстве и в быту. Для того, чтобы понять, что это так достаточно просто пройтись по каталогу продукции T-T Electric, представленному на нашем сайте.

При этом основное технологическое отличие электродвигателя постоянного тока от двигателя переменного тока заключается наличие у первого коллектора — устройства переключающего обмотки во время вращения, и представляющего собой выведенные на изолированную часть вала начала и концы обмоток ротора двигателя. Тем самым устройство электродвигателя постоянного тока таково, что выводы якоря и выводы обмоток возбуждения здесь выводятся, как правило, на свои клеммы в клеммной коробке двигателя. На якорь поступает полное напряжение питания, в то время как на обмотку возбуждение регулируемый ток, например, от реостата, а в современных приводных системах, с платы обмотки возбуждения. Причем именно благодаря изменению силы этого тока и происходит вращение двигателя. Принцип работы здесь такой — чем больше ток на обмотке якоря, тем выше скорость двигателя.

Правда стоит заметить, что у электродвигателей переменного тока также бывают выводы роторных обмоток, но в отличие от устройства электродвигателя постоянного тока, здесь они представляют из себя три сплошных кольца, на которые через коллекторный аппарат постоянно подаются фазовые напряжения.

Типы электродвигателя постоянного тока
В зависимости от подключения обмотки якоря и обмотки возбуждения двигатели постоянного тока делятся на электродвигатели с независимым возбуждением — обмотка возбуждения питается от своего источника, и с самовозбуждением — параллельное возбуждение, последовательное возбуждение и смешанное.

В промышленности применяются двигатели с независимым возбуждением. В этих двигателях обмотка возбуждения питается от независимого источника напряжения. Обмотки якоря и возбуждения независимы друг от друга.

Схема подключения двигателя с последовательным возбуждением, по сути, является аналогом схемы с независимым возбуждением. Разница в том, что и якорь, и обмотка возбуждения (через сопротивление) подключены к одному источнику питания.

Двигатели с такой схемой подключения применяются в системах с четким механическими характеристиками, как-то: станки, вентиляторы и т.п.

Моторы постоянного тока с последовательным возбуждением применяется в тех случаях, когда необходим большой пусковой ток, а, следовательно, и момент, а также мягкая механическая характеристика.

Двигатели с таким способом подключения применяются на транспорте: электровозы, трамваи, троллейбусы. По этой схеме обмотка якоря и возбуждения подключены последовательно.

Если подать напряжение на двигатель, то токи в обмотках будут одинаковы. Основной недостаток этих двигателей заключается в том, что при уменьшении нагрузки на валу двигателя до 25% от номинального значения, происходит резкое увеличение оборотов двигателя, чреватое для двигателя постоянного тока. Поэтому для предотвращения этого недостатка двигатель все время приходится нагружать.

Очень редко применяется схема подключения двигателя со смешанным возбуждением. В этой схеме одна обмотка возбуждения включена последовательно, а другая параллельно якоря.

Таким образом на сегодняшний день существует множество вариантов исполнения электродвигателей постоянного тока, однако наиболее распространенным является двигатели с независимым возбуждением, подключаемые через особые приводы постоянного тока обеспечивающие не только рекуперацию энергии, но и точное поддержание скорости и стабильный момент на валу во всем диапазоне регулирования скорости.

ЭЛЕКТРОДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

Исторически первый электродвигатель работал именно на постоянном токе, так как во времена его изобретения в 1834 году Борисом Якоби единственным источником тока были гальванические батареи.

Принцип работы электродвигателя постоянного тока прост: в простейшем случае он имеет по одной паре полюсов на статоре и роторе, при этом направление тока в обмотке ротора дважды за оборот изменяется при помощи специального устройства – коллектора, представляющего собой набор пластин, соответствующий числу роторных обмоток.

При вращении ротора различные участки обмотки последовательно соединяются через щетки с внешним источником постоянного тока.

Так как электродвигатель с двухполюсным ротором имеет две мертвые точки, где запуск без внешнего импульса невозможен (полюса ротора находятся точно напротив полюсов статора, и равнодействующая сил отталкивания равна нулю), на практике используются только многополюсные роторы.

Кроме того, увеличение числа полюсов увеличивает равномерность вращения ротора.

Подключение обмотки якоря может быть различным:

Обмотка ротора не имеет прямого соединения со статором, такое подключение используется в схемах с регулировкой оборотов.

Обмотка якоря включена последовательно со статором. При увеличении нагрузки на сериесный электродвигатель его обороты резко падают (но возрастает крутящий момент), при уменьшении нагрузки возможен разнос. По этой причине сериесное возбуждение не используется там, где возможен холостой ход электродвигателя. Классический пример сериесного мотора – автомобильный электростартер.

Якорь подключается параллельно статору. При перегрузке крутящий момент на роторе не изменяется, при отсутствии нагрузки не возникает разнос.

Якорь имеет две обмотки, подключенных последовательно статору и параллельно с ним. По своим электромеханическим характеристикам компаундные электромоторы находятся между сериесными и шунтовыми – они способны поднимать крутящий момент при увеличении нагрузки и вместе с тем не склонны к разносу на холостом ходу.

Компаундное возбуждение часто используется в электроинструменте, где необходимо и ограничение максимальных оборотов, и устойчивость к росту нагрузок.

В зависимости от взаимного направления магнитных потоков обеих обмоток различают прямое и обратное компаундное включение: при обратном включении и правильном конструировании ротора возможно поддержание стабильных оборотов при изменении нагрузки, но такая схема склонна к периодическим колебаниям частоты вращения.

Сфера применения электродвигателей постоянного тока – это в первую очередь устройства и системы с батарейным питанием: от микромоторов карманных плейеров до мощных автомобильных электростартеров, тяговые двигатели легких электромобилей и электрокаров, аккумуляторный электроинструмент.

При всех своих достоинствах (простота устройства, высокий КПД, легкость реверса) электродвигатели постоянного тока имеют ряд серьезных недостатков:

  1. При вращении ротора в питающей цепи возникают импульсные помехи в момент перехода ламелей коллектора мимо щеток, к которым добавляются радиопомехи из-за искрения на коллекторе.
  2. Сам коллектор и токопроводящие щетки неизбежно изнашиваются. Неравномерный износ ламелей коллектора и изолятора между ними может приводить к нарушению контакта щеток и коллектора, снижению мощности и обгоранию ламелей.
  3. В ряде случаев искрение щеток усиливается настолько, что возникает так называемое «кольцевое пламя» — сплошная область ионизированного воздуха, окружающая коллектор с разрушительными последствиями. Для противодействия этому чаще всего используется принудительная вентиляция области коллектора, выносящая ионизированный воздух наружу.

УПРАВЛЕНИЕ ЭЛЕКТРОДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА

Наиболее очевидный способ управления оборотами электродвигателя постоянного тока – это изменение тока в его обмотках и, следовательно, магнитного потока. Изначально в цепь питания ротора включался мощный реостат, однако этот способ управления имел явные недостатки:

Сложность автоматического поддержания оборотов.

Движок реостата приводился либо вручную, либо присоединялся к центробежному регулятору. В любом случае резкое увеличение нагрузки не могло быть быстро скомпенсировано.

Высокие потери мощности.

На мощных электродвигателях реостат значительно нагревался, снижая КПД двигательной установки и требуя введения дополнительного охлаждения.

Применение линейного стабилизатора для управления электродвигателем – это, по сути, замена механического реостата электронным: изменяя мощность, рассеиваемую линейным стабилизатором, изменяют ток в обмотках электродвигателя.

Частота этих импульсов строго пропорциональна оборотам двигателя, что широко используется в устройствах правления коллекторными двигателями.

Например, автомобильный доводчик стеклоподъемников автоматически отключает питание мотора, перестав фиксировать пульсацию тока в цепи питания стеклоподъемника (обнаружение момента остановки электродвигателя).

Совершенствование силовой электроники и в частности создание ключей с низким собственным падением напряжения в открытом состоянии (IGBT, MOSFET) позволило создать системы электронного управления широтно-импульсной модуляцией.

Суть широтно-импульсной модуляции (сокращенно ШИМ) состоит в изменении длительности импульсов тока при сохранении их постоянной частоты.

Основной проблемой схем с широтно-импульсной является индуктивность обмоток электродвигателя. Она делает невозможным моментальное нарастание и падение тока, искажая форму прямоугольного сигнала, подаваемого на электродвигатель. В свою очередь, при неправильном проектировании силового каскада ШИМ-контроллера это способно привести к перегреву силовых ключей и резкому падению КПД.

ПУСК ЭЛЕКТРОДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА

В момент включения электродвигателя постоянного тока в питающую сеть возникает значительный бросок тока, так как пусковой ток электродвигателя в несколько раз (при мощностях, измеряемых киловаттами – до 20) превосходит номинальный. По этой причине прямой пуск электродвигателей используется только при небольших мощностях.

Осциллограмма тока якоря при этом становится близкой к пилообразной, а амплитуда пульсаций зависит от числа ступеней пускового реостата.

В тех случаях, когда нагрузка на электродвигатель находится в определенном заданном диапазоне, реостатный пуск производится в автоматическом режиме с помощью реле времени. Эта схема используется на ряде электропоездов, однако распространены и ручные контроллеры, управляемые машинистами.

Этого лишен пуск изменением питающего напряжения, применяемый в тех случаях, когда возможно управление источником тока, например, в электро трансмиссиях постоянного тока: в момент пуска приводящий генератор двигатель работает на минимальных оборотах, плавно набирая их по мере разгона.

Также могут применяться управляемые выпрямители, но этот способ более применим для электродвигателей низкой мощности.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector