Kontakt-bak.ru

Контракт Бак ЛТД
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое постоянный и переменный электрический ток

Переменный и постоянный ток. Общие понятия


Электрический ток
— движение заряженных частиц по проводнику в определенном направлении. Точнее это величина, которая показывает, сколько заряженных частиц прошло через проводник за единицу времени. Если за одну секунду через поперечное сечение проводника прошло количество заряженных частиц величиной в один кулон, то по данному проводнику течет ток величиной в один ампер (обозначение силы тока в соответствии с международной системой СИ). Величину электрического тока (количество ампер) называют силой тока. В зависимости от изменения величины во времени ток бывает постоянным и переменным.

Постоянный ток — это электрический ток, который не изменяет своего направления с течением времени. Переменный ток — с течением времени в определенной закономерности изменяет как свою величину, так и направление. Причем данные изменения повторяются через определенные промежутки времени — то есть они периодичны.

Переменный и постоянный ток в электроустановках

Для трехфазной электрической сети характерен переменный ток. Протекание переменного тока по проводникам обуславливается наличием источника переменной электродвижущей силы (ЭДС), изменяющей свою величину, как по величине, так и по направлению. В данном случае изменение величины и направления ЭДС осуществляется по закону синуса, то есть график изменения переменного тока во времени — это синусоида. Источником синусоидальной ЭДС является генератор переменного тока.

Практически все электрооборудование электроустановок и промышленных предприятий питается от сети переменного тока, так как это наиболее целесообразно и имеет множество плюсов. Но есть и некоторое оборудование, которое работает от сети постоянного тока (или некоторые его части): синхронный двигатель, электромагнитный привод элегазового выключателя, двигатель постоянного тока и другие. Для того чтобы преобразовать переменный ток в постоянный ток (необходимый для питания вышеуказанного электрооборудования) используют выпрямители.

Кроме того, постоянный ток используется для передачи по высоковольтным линиям больших мощностей электрической энергии. В этом случае при передаче электрической энергии на большие расстояния электрические потери значительно меньше, чем при той же передаче на переменном токе.

Постоянный ток — общие понятия, определение, единица измерения, обозначение, параметры

Постоянный ток — электрический ток, не изменяющийся по времени и по направлению. За направление тока принимают направление движения положительно заряженных частиц. В том случае, если ток образован движением отрицательно заряженных частиц, направление его считают противоположным направлению движения частиц.

Строго говоря, под «постоянным электрическим током» следовало бы понимать «электрический ток постоянный по величине», соответственно математическому понятию «постоянная величина». Но в электротехнику этот термин был введен в значении «электрического тока, постоянного по направлению и практически постоянного по величине».

Под «практически постоянным по величине электрическим током» понимают ток, изменения которого во времени столь незначительны по величине, что при рассмотрении явлений в электрической цепи, по которой проходит такой электрический ток, этими изменениями вполне можно пренебречь, а следовательно, можно не учитывать ни индуктивности, ни емкости электрической цепи.

Наиболее распространенные источники постоянного тока — гальванические элементы, аккумуляторы, генераторы постоянного тока и выпрямительные установки.

В электротехнике для получения постоянного тока используют контактные явления, химические процессы (первичные элементы и аккумуляторы), электромагнитное наведение (электромашинные генераторы). Широко применяется также выпрямление переменного тока или напряжения.

Из всех источников э. д. с. химические и термоэлектрические источники, а также так называемые униполярные машины являются идеальными источниками постоянного тока. Остальные устройства дают пульсирующий ток, который при помощи специальных устройств в большей или меньшей мере сглаживается, лишь приближаясь к идеальному постоянному току.

Для количественной оценки тока в электрической цепи служит понятие силы тока.

Сила тока — это количество электричества Q, протекающее через поперечное сечение проводника в единицу времени.

Если за время I через поперечное сечение проводника переместилось количество электричества Q, то сила тока I=Q/ t

Единица измерения силы тока — ампер (А).

Плотность тока — это отношение силы тока I к площади поперечного сечения F проводника — I/F. (12)

Единица измерения плотности тока — ампер на квадратный миллиметр (А/мм 2 ).

В замкнутой электрической цепи постоянный ток возникает под действием источника электрической энергии, который создает и поддерживает на своих зажимах разность потенциалов, измеряемую в вольтах (В).

Зависимость между разностью потенциалов (напряжением) на зажимах электрической цепи, сопротивлением и током в цепи выражается законом Ома . Согласно этому закону для участка однородной цепи сила тока прямо пропорциональна значению приложенного напряжения и обратно пропорциональна сопротивлению I = U/R ,

где I — сила тока. A, U— напряжение на зажимах цепи В, R — сопротивление, Ом

Это самый важный электротехнический закон. Подробнее о нем смотрите здесь: Закон Ома для участка цепи

Работу, совершаемую электрическим током в единицу времени (секунду), называют мощностью и обозначают буквой Р. Эта величина характеризует интенсивность совершаемой током работы.

Мощность P=W/t= UI

Единица измерения мощности — ватт (Вт).

Выражение мощности электрического тока можно преобразовать, заменив на основании закона Ома напряжение U произведением IR. В результате получим три выражения мощности электрического тока P = UI= I 2 R= U 2 /R

Большое практическое значение имеет то, что одну и ту же мощность электрического тока можно получить при низком напряжении и большой силе тока или при высоком напряжении и малой силе тока. Этот принцип используют при передаче электрической энергии на расстояния.

Ток, протекая по проводнику, выделяет теплоту и нагревает его. Количество теплоты Q, выделяющейся в проводнике определяют формулой Q = I 2 Rt.

Эту зависимость называют законом Джоуля — Ленца .

На основании законов Ома и Джоуля — Ленца можно проанализировать опасное явление, которое часто возникает при непосредственном соединении между собой проводников, подводящих электрический ток к нагрузке (электроприемнику). Это явление называют коротким замыканием , так как ток начинает протекать более коротким путем, минуя нагрузку. Такой режим является аварийным.

На рисунке приведена схема включения лампы накаливания E L в электрическую сеть. Если сопротивление лампы R — 500 Ом, а напряжение сети U = 220 В, то ток в цепи лампы будет I = 220/500 = 0,44 А.

Схема, поясняющая возникновение короткого замыкания

Рассмотрим случай, когда провода, идущие к лампе накаливания, соединены через очень малое сопротивление ( R ст — 0,01 Ом), например толстый металлический стержень. В этом случае ток цепи, подходя к точке А, будет разветвляться по двум направлениям: большая его часть пойдет по пути с малым сопротивлением — по металлическому стержню, а небольшая часть тока I л.н — по пути с большим сопротивлением — лампе накаливания.

Определим ток, протекающий по металлическому стержню: I = 220/0,01 =22 000 А.

При коротком замыкании (к.з) напряжение сети будет меньше 220 В, так как большой ток в цепи вызовет большую потерю напряжения, и ток, протекающий по металлическому стержню, будет несколько меньше, но тем не менее во мною раз превышать ток, потреблявшийся ранее лампой накаливания.

Как известно, в соответствии с законом Джоуля-Ленца ток, проходя по проводам, выделяет теплоту, и провода нагреваются. В нашем примере площадь поперечного сечения проводов рассчитана на небольшой ток 0,44 А.

При соединении проводов более коротким путем, минуя нагрузку, по цепи будет протекать очень большой ток — 22000 А. Такой ток вызовет выделение большого количества теплоты, что приведет к обугливанию и возгоранию изоляции, расплавлению материала проводов, порче электроизмерительных приборов, оплавлению контактом выключателей, ножей рубильнике и т. п.

Источник электрической энергии, питающий такую цепь, может быть поврежден. Перегрев проводов может вызвать пожар. Вследствие этого при монтаже и эксплуатации электрических установок, чтобы предупредить непоправимые последствия короткого замыкания, необходимо соблюдать следующие условии: изоляция проводов должна соответствовать напряжению сети и условиям работы.

Площадь поперечною сечения проводов должна быть такой, чтобы нагревание их при нормальной нагрузке не достигало опасного значения. Места соединений и ответвлений проводов должны быть качественно выполнены и хорошо изолированы. В помещении провода должны быть проложены так, чтобы они были защищены от механических и химических повреждений и от сырости.

Чтобы избежать внезапного, опасного увеличения тока в электрической цепи при коротком замыкании, ее защищают с помощью предохранителей или автоматических выключателей.

Существенный недостаток постоянного тока состоит в том, что его напряжение сложно повысить. Это затрудняет передачу электрической энергии на постоянном токе на большие расстояния.

Электрический ток постоянный и переменный

В самом начале, давайте дадим короткое определение электрическому току. Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Ток — это движение электронов в проводнике, напряжение — это то, что приводит их (электроны) в движение.

Теперь рассмотрим такие понятия, как постоянный и переменный ток и выявим их принципиальные отличия.

Отличие постоянного тока от переменного

Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, «течет» в все время одну сторону. Например, по металлическим проводам от плюсового зажима источника напряжения к минусовому (в электролитах его создают положительные и отрицательные ионы). Сами же электроны движутся от минуса к плюсу, но ещё до открытия электрона договорились считать, что ток течет от плюса к минусу и до сих пор при расчетах придерживаются этого правила.

Читать еще:  Подключение счетчика электроэнергии в низковольтную сеть большой мощности

Чем же от постоянного отличается переменный ток (напряжение)? Из самого названия следует, что он меняется. Но — как именно? Переменный ток меняет за период как свою величину, так и направление движения электронов. В наших бытовых розетках — это ток с синусоидальными (гармоническими) колебаниями частотой 50 герц (50 колебаний в секунду).

Если рассмотреть замкнутую цепь на примере лампочки, то мы получим следующее:

  • при постоянном токе электроны будут течь через лампочку всегда в одном направлении от (-) минуса к (+) плюсу
  • при переменном направление движения электронов будет меняться в зависимости от частоты генератора. т. е. если в нашей сети частота переменного тока 50 герц (Hz), то направление движения электронов за 1 секунду поменяется 100 раз. Таким образом + и — в нашей розетке меняются местами сто раз в секунду относительно ноля. Именно поэтому мы можем воткнуть электрическую вилку в розетку «вверх ногами» и все будет работать.

Переменное напряжение в нашей бытовой розетке изменяется по синусоидальному закону. Что это значит? Напряжение от нуля увеличивается до положительного амплитудного значения (положительный максимум), потом уменьшается до нуля и продолжает уменьшаться дальше — до отрицательного амплитудного значения (отрицательный максимум), затем снова увеличивается, переходя через ноль и возвращается к положительному амплитудному значению.

Говоря другими словами, при переменном токе постоянно меняется его заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Получается, что за секунду электроны 100 раз меняют направление своего движения и свою полярность, с положительной на отрицательную (помните, что их частота составляет 50 герц — 50 периодов или колебаний в секунду?).

Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них — сложность конструкции самого генератора. А генератор переменного тока обладает более простой конструкцией, а потому прост и дешев в эксплуатации.

Дело в том, что одинаковую мощность можно передать высоким напряжением и маленьким током или наоборот: низким напряжением и большим током. Чем больше ток, тем больше нужно сечение провода, т.е. провод должен быть толще. Для напряжения толщина провода не важна, были бы изоляторы хорошие. Переменный ток (в отличие от постоянного) просто легче преобразовывать.

И это — удобно. Так по проводу относительно небольшого сечения электростанция может отправить пятьсот тысяч (а иногда и до полутора миллионов) вольт энергии при токе в 100 ампер практически без потерь. Потом, например, трансформатор городской подстанции «заберет» 500 000 вольт при токе в 10 ампер и «отдаст» в городскую сеть 10 000 вольт при 500 амперах. А районные подстанции уже преобразуют это напряжение в 220/380 вольт при токе порядка 10 000 ампер, для нужд жилых и промышленных кварталов города.

Разумеется схема упрощена и имеется в виду вся совокупность районных подстанций в городе, а не какая-то конкретно.

Персональный компьютер (ПК) работает по схожему принципу, но — в обратную сторону. Он преобразует переменный ток в постоянный а затем, при помощи блока питания, понижает его напряжение до значений, необходимых для работы всех компонентов внутри корпуса компьютера.

В конце 19-го века всемирная электрификация вполне могла пойти и другим путем. Томас Эдисон (считается, что именно он изобрел одну из первых коммерчески успешных ламп накаливания) активно продвигал свою идею постоянного тока. И если бы не исследования другого выдающегося человека, доказавшего эффективность тока переменного, то все могло бы быть по другому.

Гениальный серб Никола Тесла (некоторое время работавший у Эдисона), первым спроектировал и построил генератор многофазного переменного тока, доказав его эффективность и преимущество по сравнению с аналогичными разработками, работавшими с постоянным источником энергии.

Сейчас давайте рассмотрим «места обитания» постоянного и переменного тока. Постоянный, например, находится в нашем телефонном аккумуляторе или батарейках. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в местах его хранения (аккумуляторах).

Источники постоянного напряжения это:

  1. обычные батарейки применяемые в различных приборах (фонарики, плееры, часы, тестеры и т.д.)
  2. различные аккумуляторы (щелочные, кислотные и т. п.)
  3. генераторы постоянного тока
  4. другие специальные устройства, например: выпрямители, преобразователи
  5. аварийные источники энергии (освещение)

Например, городской электротранспорт работает на постоянном токе напряжением в 600 Вольт (трамваи, троллейбусы). Для метрополитена оно выше — 750-825 Вольт.

Источники переменного напряжения:

  1. генераторы
  2. различные преобразователи (трансформаторы)
  3. бытовые электросети (домашние розетки)

О том, как и чем измерять постоянное и переменное напряжение мы с Вами говорили вот в этой статье, а напоследок (всем тем кто дочитал статью до конца) хочу рассказать небольшую историю. Озвучил ее мне мой шеф, а я перескажу с его слов. Уж больно она к нашей сегодняшней теме подходит!

Поехал он как-то в служебную командировку с нашими директорами в соседний город. Налаживать дружественные отношения с тамошними IT-шниками 🙂 А сразу возле трассы там такое замечательное местечко есть: родник с чистой водой. Возле все обязательно останавливаются и воду набирают. Это, своего рода, уже традиция.

Местные власти, решив облагородить данное место, сделали все по последнему слову техники: вырыли сразу под родничком большую прямоугольную яму, обложили ее ярким кафелем, перелив сделали, подсветку светодиодную, бассейн получился. Дальше — больше! Сам родник «упаковали» в крапленую гранитную крошку, придали ему благородную форму, иконку над жерлом под стекло вмуровали — святое место, значится!

И последний штрих — поставили систему подачи воды на фотоэлементе. Получается, что бассейн всегда наполнен и в нем «булькает», а чтобы набрать воду непосредственно из родничка, нужно поднести руки с сосудом к фотоэлементу и оттуда — «проистекает» 🙂

Надо сказать, что по дороге к источнику наш шеф рассказывал одному из директоров, как это круто: новые технологии, вайфай, фотоэлементы, сканирование по сетчатке глаза и т.д. Директор был классическим технофобом, поэтому придерживался противоположного мнения. И вот, подъезжают они к родничку, подносят руки куда следует, а вода не течет!

Они и так, и сяк, а результата — ноль! Оказалось, что тупо не было напряжения в электрической сети, которая питала эту шайтан-систему 🙂 Директор был «на коне»! Отпустил несколько «контрольных» фраз по поводу всех этих п. х технологий, таких же п. х элементов, всех машин вообще и данной конкретной в частности. Зачерпнул канистрой прямо из бассейна и пошел в машину!

Вот и получается, мы можем настроить все что угодно, «поднять» навороченный сервер, предоставить лучший и востребованный сервис, но, все равно, самый главный человек — это дядя Вася-электрик в ватнике, который одним движением руки может организовать полный skipped всей этой технической мощи и изяществу 🙂

Так что помните: главное — качественное электропитание. Хороший серверный UPS (источник бесперебойного питания) и стабильное напряжение в розетках, а все остальное — приложится 🙂

На сегодня у нас — все и до следующих статей. Берегите себя! Ниже — небольшое видео по теме статьи.

Чем отличается постоянный ток от переменного

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный. Чем отличается переменный ток от постоянного? Характеристики постоянного тока.

Постоянный ток

Direct Current или DC так по-английски обозначают электрический ток который на протяжении любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос. Важная особенность постоянного электрического тока — это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках. Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств.

Переменный ток

(Alternating Current) или АС английская аббревиатура обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «

». Если говорить о переменном токе простыми словами , то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное. На рисунке обратное направление – это область графика ниже нуля.

Читать еще:  СИЗ для соединения проводов

Теперь давай разберемся, что такое частота. Частота это — период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние. Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока. Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.

Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель” . Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

что такое диод и как работает диодный мост , ты можешь узнать в моих следующих статьях.

Чем отличается переменный ток от постоянного

Хотя электрические приборы мы каждый день используем в повседневной жизни, не каждый может ответить, чем отличается переменный ток от постоянного, несмотря на то, что об этом рассказывается в рамках школьной программы. Поэтому имеет смысл напомнить основные догматы.

Обобщенные определения

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Источники ЭДС

Источники электротока любого рода бывают двух видов:

  • первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
  • вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.

Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.

Упрощенное изображение конструкции генератора

Обозначения:

  • 1 – направление вращения;
  • 2 – магнит с полюсами S и N;
  • 3 – магнитное поле;
  • 4 – проволочная рамка;
  • 5 – ЭДС;
  • 6 – кольцевые контакты;
  • 7 – токосъемники.

Принцип работы

Механическая энергия преобразуется изображенным на рисунке генератором в электрическую следующим образом:

за счет такого явления, как электромагнитная индукция, при вращении рамки «4», помещенной в магнитное поле «3» (возникающее между различными полюсами магнита «2»), в ней образуется ЭДС «5». Напряжение в сеть подается через токосъемники «7» с кольцевых контактов «6», к которым подключена рамка «4».

Видео: постоянный и переменный ток — отличия

Что касается величины ЭДС, то она зависит от скорости пересечения силовых линий «3» рамкой «4». Из-за особенностей электромагнитного поля минимальная скорость пересечения, а значит и самое низкое значение электродвижущей силы будет в момент, когда рамка находится в вертикальном положении, соответственно, максимальное — в горизонтальном.

Учитывая изложенное выше, в процессе равномерного вращения индуктируется ЭДС, характеристики величины и направления которого изменяются с определенным периодом.

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).

Горизонтальная ось отображает время, вертикальная – напряжение

Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.

Горизонтальная ось отображает угол поворота в градусах, вертикальная — величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)

Начальное положение рамки

Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц). Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле: . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Трехфазные генераторы

Заметим, что наиболее экономически выгодным способом получения переменного электротока будет использование трехфазного генератора. Упрощенная схема его конструкции показана на рисунке.

Устройство трехфазного генератора

Как видим, в генераторе используются три катушки, размещенные со смещением 120°, соединенные между собой треугольником (на практике такое соединение обмоток генератора не применяется в виду низкого КПД). При прохождении одного из полюсов магнита мимо катушки, в ней индуктируется ЭДС.

Графическое изображение сгенерированного трехфазного электротока

Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

Переменный электрический ток. Генератор переменного электрического тока. — презентация

Презентация была опубликована 5 лет назад пользователемСтепан Батурин

Похожие презентации

Презентация на тему: » Переменный электрический ток. Генератор переменного электрического тока.» — Транскрипт:

1 Переменный электрический ток. Генератор переменного электрического тока.

2 Определение Переменным током называется электрический ток, который периодически изменяется по величине и по направлению. Условное обозначение или. Модуль максимального значения силы тока за период называется амплитудой колебаний силы тока. В настоящее время в электрических сетях используется переменный ток. Многие законы, которые были выведены для постоянного тока, действуют и для переменного тока.

Читать еще:  Что такое защитное зануление и как оно работает

3 Переменный ток имеет ряд преимуществ по сравнению с постоянным током: — генератор переменного тока значительно проще и дешевле генератора постоянного тока; — переменный ток можно трансформировать; — переменный ток легко преобразуется в постоянный; — двигатели переменного тока значительно проще и дешевле двигателей постоянного тока; — проблема передачи электроэнергии на большие расстояния была решена только при использовании переменного тока высокого напряжения и трансформаторов. Для производства переменного тока применяется синусоидальное напряжение.

4 Частота переменного тока – это число колебаний в 1 с Стандартная частота промышленного переменного тока равна 50 Гц.

6 Генератор переменного тока

7 Генератор переменного тока — является электромеханическим устройством, которое преобразует механическую энергию в электрическую энергию переменного тока. Системы производящие переменный ток были известны в простых видах со времён открытия магнитной индукции электрического тока. Принцип действия генератора основан на явлении электромагнитной индукции возникновении электрического напряжения в обмотке статора, находящейся в переменном магнитном поле. Оно создается с помощью вращающегося электромагнита ротора при прохождении по его обмотке постоянного тока.

10 Общий вид генератора переменного тока с внутренними полюсами; Ротор является индуктором, а статор якорем.

11 Схема устройства генератора: 1 неподвижный якорь; 2 вращающийся индуктор; 3 контактные кольца; 4 скользящие по ним щетки.

12 Вращающийся индуктор генератора 1 (ротор) и якорь (статор) 2, в обмотке которого индуцируется ток.

14 — это генератор, который приводится в действие паровой или газовой турбиной.

17 Генератор переменного тока раннего 20-го века сделанный в Будапеште

Что такое постоянный и переменный электрический ток

Наш прибор показывает так называемое действующее значение напряжения ( или тока). Для простоты понимания можете считать его усредненным. А как же в действительности будет изменяться напряжение в сети? В действительности напряжение будет меняться от нуля до своего максимального значения величиной 310В. В какой-то выбранный момент времени напряжение будет иметь свое значение. Поэтому, например, если (вероятность этого, конечно, мала)вы включите свет в момент напряжения в сети 310В, будьте уверены — вам придется лампочку поменять. А в телевизоре, например, может перегореть предохранитель. Хотя к современным ТВ это мало относится.

Те, кто хочет узнать кое-что поподробнее, могут почитать дальше.

Частота f — это число колебаний в секунду. Теперь давайте подсчитаем. Если одно колебание у нас происходит за время периода Т, которое равно 0,02сек, то тогда за одну секунду у нас произойдет 50колебаний(1/0,02=50). А одно колебание представляет собой движение электронов сначала в одну сторону, потом в другую(два полупериода). Т.е. за 1сек электроны будут двигаться поочередно то в одну то в другую сторону 50раз. Вот вам и наша частота тока в сети, которая равна 50Гц(Герц).

Амплитуда — наибольшая величина тока(Imах) или напряжения(Umах=310В) за время периода Т. Очевидно, что за один период синусоидальный ток и напряжение достигают два раза своей максимальной величины.

Мгновенное значение — мы уже знаем, что переменный ток непрерывно изменяет свое направление и величину. Величина напряжения в данный момент называется мгновенным значением напряжения. Это же относится и к величине тока.

В качестве иллюстрации на рис.6 указаны несколько мгновенных значений(200В, 300В, 310В, — 150В, — 310В, — 100В) величины напряжения в электрической цепи в течение одного периода. Видно, что в начальный момент напряжение равно равно нулю, после чего постепенно нарастает до 100В, 200В и т.д. Достигнув максимального значения 310В, напряжение начинает постепенно уменьшаться до нуля, после чего изменяет свое направление и снова возрастает, достигая величины минус 310В(- 310В) и т.д. Если кто-то с трудом может себе представить, что такое смена направления, может представить себе, что плюс и минус в розетке меняются местами — т.е. если мы условно примем ноль(землю) за минус, а фазу за плюс. И происходит это 50раз в секунду. Ну, вот где-то примерно так.
Действующее значение. Итак, зададимся вопросом — а какому постоянному напряжению равно по своему действию наше переменное напряжение в сети, показанное на рис.6? Теория и практика показывают , что оно равняется постоянному напряжению величиной 220В — рис.7. Взять это на веру не так уж и сложно, поскольку несложно увидеть, что рассматриваемое в течение одного периода напряжение имеет значение 310В только в два момента, а в остальное время оно меньше. Так как наше синусоидальное напряжение изменяется непрерывно, то целесообразно было ввести такое понятие как — действующее напряжение. Ведь именно по какому-либо конкретному значению напряжения(или тока), а не его меняющемуся значению мы можем «прикинуть» его силу. Так вот, под действующим значением переменного тока(ну или напряжения)мы понимаем такой постоянный ток, который за то же самое время совершает ту же работу(или выделяет такое же количество тепла), что и данный переменный ток.

Поэтому, наша обыкновенная лампочка(или, например, обогревательный прибор)будет одинаково работать как при переменном напряжении, изменяющегося от нуля до 310В, так и при постоянном напряжении 220В. А 12-вольтовая лампочка будет одинаково светить как от источника переменного напряжения величиной 12В(изменяющегося от нуля до 16,8В), так и от любой батарейки или аккумулятора(а они являются, как известно, источниками постоянного напряжения). Итак, запомните.

1)электрический ток(напряжение), который периодически изменяет свое направление и величину, называется переменным током. Любой переменный ток характеризуется в основном своей частотой, амплитудой и действующим значением;

2)приборы, предназначенные для измерения переменного тока, показывают его действующее значение;

3)напряжение измеряют вольтметром(или комбинированным прибором — авометром), ток — амперметром(или комбинированным прибором — авометром). Также ток можно измерять так называемыми токовыми клещами. Служат они для бесконтактного измерения тока — рабочая часть прибора образует кольцо вокруг измеряемого провода и по величине электромагнитного поля, действующего на рабочую часть прибора, выводится информация на его небольшой дисплей о величине протекающего тока. Авометр — это комбинированный прибор(его в простонародье еще называют просто тестером), который полностью в своем техпаспорте называется ампервольтомметром и служит для измерения и тока, и напряжения, и сопротивлений. А цифровые модели могут измерять и частоту напряжения(тока), и емкости конденсаторов и другие вещи — это уж как задумает разработчик;

4)зная значение(действующее) переменного напряжения, всегда можно узнать его максимальное значение(не забудьте — оно меняется по синусоидальному закону). А связь здесь такая —

U max = 1,4 U , где U — действующее значение, а U max — максимальное значение(амплитуда). На этом пока всё!

Что такое постоянный и переменный электрический ток

Каков механизм действия переменного электрического тока на организм человека?

Предельно допустимые значения

напряжений прикосновений и токов

Поражение электрическим током опасно для здоровья и жизни человека. Переменный ток значительно более опасен, чем постоянный электрический ток такого же напряжения. Наиболее опасным считается технический переменный ток с частотой 50 Гц (50 периодов в секунду), силой 0,1 А и напряжением выше 250 В. Механизм действия электрического тока на организм весьма сложен и сводится в основном к нагреванию, электролизу и механическому действию. Вследствие превращения электрической энергии в тепловую воздействие электрического тока вызывает ожоги в месте приложения тока и значительное повышение температуры внутренних органов. В таблице представлены предельно допустимые значения напряжений прикосновений и токов, протекающих через тело человека при частоте промышленного тока 50 Гц.

Если человек, попавший под напряжение, в состоянии самостоятельно преодолеть действие судороги и освободиться от контакта с проводниками, то такой ток называют отпускающим. В случаях, когда человек самостоятельно не может освободиться от контакта, возникает опасность длительной судороги. Токи, вызывающие такую реакцию организма, получили название неотпускающих. Пороговые значения неотпускающих переменных токов при частоте 50 Гц лежат в пределах 10−15 мА. При 25−50 мА действие тока распространяется и на мышцы грудной клетки, что приводит к затруднению и даже прекращению дыхания.

Длительность протекания тока через тело человека влияет на сопротивление кожи, вследствие чего с увеличением времени воздействия тока на живую ткань повышается его значение, растут последствия воздействия тока на организм.

Объясните, что означает продолжительность воздействия в 0,5 с тока силой 125 мА при напряжении в 105 В?

1. Данный ток относится к неотпускающим токам. При силе в 25−50 мА действие тока распространяется и на мышцы грудной клетки, что приводит к затруднению и даже прекращению дыхания.

2. При силе тока в 125 мА допустимое время воздействия его на человека составляет 0,5 с (меньше одной секунды).

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector