Kontakt-bak.ru

Контракт Бак ЛТД
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Откуда берется ноль в трансформаторе

Две фазы в вашей розетке 220 вольт? Это более реально, чем вы думаете

О распространенной неисправности проводки, когда в обоих разъемах розетки 220 В — фаза. О том, почему это происходит и чем опасно. От первого лица и немного неформально.

Есть одна характерная неисправность электропроводки, которая способна поставить в тупик начинающего или неопытного электрика. Чтобы пояснить, о чем речь, приведу рассказ одного из знакомых:

«Приходит ко мне в субботу соседка – бабушка одинокая. И просит разобраться с электрикой в квартире. Дескать, ничего не работает, а свет, вроде не отключали.

Ну, я, понятное дело, выхожу на площадку и проверяю автоматические выключатели. Все в порядке, все автоматы включены. Беру индикатор: фаза проходит. Захожу в квартиру к бабушке, проверяю первую же розетку. Первый разъем – «фаза». Проверяю второй разъем – тоже «фаза»! Что за бред!

Перехожу к другой розетке: та же картина. Две фазы. Откуда две фазы? Ну, положим, ладно, «ноль» может пропасть. Но откуда вторая фаза может появиться в розетке 220 вольт? В квартиру же только одна фаза заведена.

Ничего я не понял, извинился перед бабусей, и пришлось ей до понедельника ожидать электрика из ЖЭКа. А что там за беда была, я так и не понял.»

Сразу попрошу специалистов не смеяться над рассказом моего знакомого. Он совсем не глупый человек, просто не электрик по профессии. А я пролью немного света на темную историю, приключившуюся с ним.

Если бы у героя рассказа кроме индикаторной отвертки при себе был тестер, и он умел бы им пользоваться, то он смог бы сделать одно интересное наблюдение. Напряжение между двумя «фазами» в розетке отсутствовало. Это значит, что «фаза» была одноименная. Оно и понятно, иначе бы технике и светильникам в квартире не поздоровилось бы.

Но откуда же все-таки «фаза» попала на проводник, который прежде был нулевым? Она просто прошла через нагрузку, то есть, например, через лампочку коридорного светильника, который всегда включен, и… и все. Оказалось, что дальше ей идти просто некуда. Причина всей катавасии в том, что вводной нулевой рабочий проводник оборван. Он может просто отломиться на нулевой шине в щите, для алюминиевого провода это проще простого.

Когда такое происходит, ток в цепи, разумеется, пропадает. Нет тока – нет и падения напряжения. Поэтому «фаза» одна и та же, что на входе, что на выходе лампочки. Получается «фаза» в обоих проводах. Ну, а поскольку все нулевые провода квартиры имеют прямое электрическое соединение между собой на все той же нулевой шине квартирного щитка, то «заблудившаяся фаза» появляется и в розетке тоже. Достаточно было выключить все выключатели и отключить от розеток все приборы в квартире, чтобы аномалия исчезла.

Ну, а для исправления ситуации было достаточно зачистить и вновь подключить отвалившийся нулевой провод, предварительно, конечно, выключив вводной пакетник.

Здесь отдельно стоит заметить, что, хотя «фаза» на нулевом проводнике в подобных ситуациях и кажется призрачной и ненастоящей, опасность она может представлять собой вполне реальную. Даже через нагрузку вас может очень неплохо «дернуть», ведь человеку и надо-то всего около 7 миллиампер для очень неприятных ощущений.

Опять же для того, чтобы избежать поражения током в подобных ситуациях, нельзя производить защитное зануление корпусов электроприборов непосредственно в месте их подключения, без отдельной заземляющей линии и повторного заземления. Ведь если пренебречь этим запретом, то при обрыве нулевого провода можно получить фазу прямо на корпусе прибора, пусть и «не совсем настоящую».

ФАЗА, НОЛЬ, ЗАЗЕМЛЕНИЕ

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток, а в быту мы используем, как правило, однофазный.

Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между «нулем» и «землей» будет близко к нулевому значению (определяется сопротивлением заземления), а «земля» — «фаза», в нашем случае 220 Вольт.

Кроме того, если гипотетически ( На практике так делать нельзя! ) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение «фаза» — «ноль» у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и «землей» (рис.4).

Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток «уйдет» по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается — тема для отдельного разговора, например, в частном доме можно самостоятельно сделать заземляющий контур. Существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ

Где фаза, где ноль — вопрос, возникающий при подключении любого электротехнического устройства.

Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).

Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.

Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт.

Одним щупом мультиметра (каким — безразлично) касаемся участка измеряемой цепи, другим — естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис.8).

Обращаю Ваше внимание — если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.

  1. Сейчас в точке 1 фазы нет.
  2. При замыкании выключателя S она появляется.
Читать еще:  Расшифровка обозначений на мультиметре, что означают кнопки и значки

Поэтому следует проверить все возможные варианты.

Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно.

Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Система заземления IT. Как жить без нуля?

Схема системы заземления IT

Сегодня публикую очередную статью Конкурса. На этот раз тема, достойная внимания профессионалов. И рассматривает её профессионал.

Встречайте – Василий Васильевич, инженер-разработчик оборудования для морских нефтяных платформ из Москвы. Прочитав мою статью про системы заземления, он решил, что её необходимо дополнить. В результате – эта статья.

Ну а я, как обычно, буду пользоваться служебным положением, и периодически вставлять свои 25 копеек)))

Система заземления IT или система заземления с изолированной нейтралью.

Обычно эта система описывается примерно так:

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

На этом всё описание системы IT обычно и ограничивается и совершенно не понятно как этим всем практически пользоваться? Как подключать потребителей, как подключать системы автоматизации?

Прежде всего, не понятно – если линейное напряжение 380 В, а фазное – 220, то как будет работать однофазная нагрузка? Ведь нуля нет, то есть фактически он оборван. А что произойдёт при обрыве нуля? Правильно, всё пойдёт в разнос – либо сгорит, либо просто не захочет работать. Как выходят из этого диссонанса в системе IT? Слушаем Василия дальше.

На эти вопросы я и постараюсь ответить.

Она широко используется на судах и всём, что считается судами, на морских нефтяных и газовых платформах, например. Не важно, что платформа стоит на дне моря, с точки зрения морского регистра она – судно 🙂

Чем система IT принципиально отличается от всех других систем?

Отличается она тем, что в ней нет ноля. Совсем нет. Никак нет. Вообще нет. 🙂

Что это значит практически?

Значит это то, что если у вас есть сеть 3 фазы 0,4 кВ, то вы НЕ СМОЖЕТЕ получить однофазное 230 В, как все привыкли, взяв один провод из фазы, а второй из нейтрали или из заземления. Нейтрали нет, а к проводу заземления подключаться НЕЛЬЗЯ, ЗАПРЕЩЕНО! Иначе у вас будет система не IT, а TT.

Как же подключить однофазную нагрузку в системе с изолированной нейтралью?

Здесь варианта два:

1) На нефтяных судах часто есть две параллельные трехфазные линии, линия 0,4 кВ 3 фазы и 230 В 3 фазы. Чтобы подключить прибор, предназначенный для использования в сети 230В, нужно включить его в сеть 230 В МЕЖДУ ДВУМЯ ФАЗАМИ, т.е. в линейное напряжение.

То есть, использовать не схему “звезда”, как это делается обычно для получения 220В, а схему “треугольник”, подключив нагрузку 220 В (которую язык почему-то не поворачивается уже назвать “однофазной”) к одной из сторон “треугольника”.

2) Использовать трансформатор, например понижающий 3Ф 400В / 3Ф 230 В. С трансформатором тоже два варианта, после него так же может быть система IT, либо трансформатор может обеспечить искусственную нейтраль на вторичной обмотке.

Обычно используют трансформатор 380 / 220 В, первичная обмотка которого подключена к любым двум фазам. Если нужно заземление, то один из выводов вторичной обмотки “глухо” заземляют, и получают систему TN-S (или, скорее TN-C-S). При правильном выборе защитного автомата и УЗО система обеспечит отличную защиту от КЗ и прямого прикосновения.

Однако, более безопасной будет система, в которой ни один из выводов трансформатора не подключается на корпус. Трансформатор может быть любым, главное, чтобы на его выходе было напряжение 220 В – не важно, линейное или фазное.

С подключением электродвигателей, клапанов и тому подобного, проблем обычно не возникает, а вот с автоматикой могут быть проблемы. Они связаны с тем, что не все приборы корректно работают при включении их питания в линейное напряжение 230 В (между фазами). Если столкнулись с этой проблемой, тут можно выйти из положения, либо заменой прибора, либо используя маломощный трансформатор с искусственным нолём после вторичной обмотки.

Теоретически да, прибору всё равно, откуда берётся напряжение 220В. А на практике, например, вместо измерения сигнала 4-20 мА какую-то ересь начинают показывать, при том, что датчики заведомо рабочие. Включаешь в обыкновенное фазное напряжение – всё работает. Видимо, что-то с архитектурой конкретных приборов не то. Не часто бывает, но мне пару раз попадалось.

Пример схемы IT

Как пример практической схемы смотрите фрагмент схемы подключения шкафа выпрямителей постоянного тока. Обратите внимание, что питание осуществляется из сети 3 фазы 230 В, каждый из трех выпрямителей включён между фазами, в линейное напряжение.

Пример построения схемы с системой заземления IT

Фактически, провод защитного заземления есть, он приходит со стороны питающего генератора, но он служит только для заземления корпусов блоков питания.

В данном случае выходное напряжение – постоянное 12 В, но может быть любым! А “минус” всех блоков питания заземлён. Выходы каждого БП через защитные автоматы (не показаны) поступают на нагрузки.

Надеюсь, стало понятней как практически устроено подключение потребителей к системе IT. Спасибо за внимание.

Голосование за эту и другие статьи будет открыто примерно через месяц, следите за новостями в группе ВК СамЭлектрик.ру! Если кто не подписан – рекомендую, нас ждёт ещё много интересного!

Василий Васильевич, автор статьи про систему заземления IT

Фаза, ноль и земля – что это такое?

Электрическая энергия, которой мы пользуемся, вырабатывается генераторами переменного тока на электростанциях. Их вращает энергия сжигаемого топлива (угля, газа) на ТЭС, падающей воды на ГЭС или ядерного распада на АЭС. До нас электричество добирается через сотни километров линий электропередач, претерпевая по дороге преобразования с одной величины напряжения в другую. От трансформаторной подстанции оно приходит в распределительные щитки подъездов и далее – в квартиру. Или по линии распределяется между частными домами поселка или деревни.

Разберемся, откуда берутся понятия «фаза», «ноль» и «земля». Выходной элемент подстанции — понижающий трансформатор, с его обмоток низкого напряжения идет питание потребителю. Обмотки соединяются в звезду внутри трансформатора, общая точка которой (нейтраль) заземляется на трансформаторной подстанции. Отдельным проводником она идет к потребителю. Идут к нему и проводники трех выводов других концов обмоток. Эти три проводника называются «фазами» (L1, L2, L3), а общий проводник – нулем (PEN).

Система с глухозаземленной нейтралью

Поскольку нулевой проводник заземлен, то такая система называется «системой с глухозаземленной нейтралью». Проводник PEN называется совмещенным нулевым проводником. До выхода в свет 7-го издания ПУЭ ноль в таком виде доходил до потребителя, что создавало неудобства при заземлении корпусов электрооборудования. Для этого их соединяли с нулем, и это называлось занулением. Но через ноль шел и рабочий ток, и его потенциал не всегда равнялся нулю, что создавало риск поражения электрическим током.

Читать еще:  Какой ток потребляет двигатель из сети при пуске и работе

Теперь из вновь вводимых трансформаторных подстанций выходят два нулевых проводника: нулевой рабочий (N) и нулевой защитный (РЕ). Функции их разделены: по рабочему протекает ток нагрузки, а защитный соединяет подлежащие заземлению токопроводящие части с контуром заземления подстанции. На отходящих от нее линиях электропередачи нулевой защитный проводник дополнительно соединяют с контуром повторного заземления опор, содержащих элементы защиты от перенапряжений. При вводе в дом его соединяют с контуром заземления.

Напряжения и токи нагрузки в системе с глухозаземленной нейтралью

Напряжение между фазами трехфазной системы называют линейным, а между фазой и рабочим нулем – фазным. Номинальные фазные напряжения равны 220 В, а линейные – 380 В. Провода или кабели, содержащие в себе все три фазы, рабочий и защитный ноль, проходят по этажным щиткам многоквартирного дома. В сельской местности они расходятся по поселку при помощи самонесущего изолированного провода (СИП). Если линия содержит четыре алюминиевых провода на изоляторах, значит, используются три фазы и PEN. Разделение на N и РЕ в таком случае выполняется для каждого дома индивидуально во вводном щитке.

К каждому потребителю в квартиру приходит одна фаза, рабочий и защитный ноль. Потребители дома распределяются по фазам равномерно, чтобы нагрузка была одинаковой. Но на практике этого не получается: невозможно предугадать, какую мощность будет потреблять каждый абонент. Так как токи нагрузки в разных фазах трансформатора не одинаковы, то происходит явление, называемое «смещением нейтрали». Между «землей» и нулевым проводником у потребителя появляется разность потенциалов. Она увеличивается, если сечения проводника недостаточно или его контакт с выводом нейтрали трансформатора ухудшается. При прекращении связи с нейтралью происходит авария: в максимально нагруженных фазах напряжение стремится к нулю. В ненагруженных фазах напряжение становится близким к 380 В, и все оборудование выходит из строя.

В случае, когда в такую ситуацию попадает проводник PEN, под напряжением оказываются все зануленные корпуса щитов и электроприборов. Прикосновение к ним опасно для жизни. Разделение функции защитного и рабочего проводника позволяет избежать поражения электрическим током в такой ситуации.

Как распознать фазные и защитные проводники

Фазные проводники несут в себе потенциал относительно земли, равный 220 В (фазному напряжению). Прикосновение к ним опасно для жизни. Но на этом основан способ их распознавания. Для этого применяется прибор, называемый однополюсным указателем напряжения или индикатором. Внутри него расположены последовательно соединенные лампочка и резистор. При прикосновении к «фазе» индикатором ток протекает через него и тело человека в землю. Лампочка светится. Сопротивление резистора и порог зажигания лампочки подобраны так, чтобы ток был за гранью чувствительности человеческого организма и им не ощущался.

Конструкция однополюсного указателя напряжения

Конструкция однополюсного указателя напряжения

1корпус
2разъемное соединение
3пружина
4индикаторная неоновая лампа
5контакт для прикосновения
6изолированная часть
7резистор

Распознать фазные проводники можно по их расцветке, для них используются черный, серый, коричневый, белый или красный цвет. Сложнее всего со старыми электрощитами: в них проводники одного цвета. Но «фазу» с помощью индикатора определить можно всегда и без ошибок.

Нулевой рабочий проводник – синего (голубого) цвета, защитный маркируется желто-зелеными полосами. Напряжение на них отсутствует, но лучше без нужды их не касаться. Есть у электриков такой закон: если сейчас напряжения нет, то оно может появиться в любой момент.

Откуда берется ноль в трансформаторе

Основная часть шума от трансформатора под нагрузкой – это результат магнитострикции. Суть этого явления вы поймете, если вспомните механизм работы трансформатора.

Принцип работы трансформатора?

Рабочая часть трансформатора – это магнитный металлический сердечник с обмотками высокого и низкого напряжения. Последние изготавливаются из проводящего материала. Сам сердечник набирается из отдельных тонких пластин.

На первичную обмотку подается переменный ток. Электрическое поле порождает магнитное, которое передается сердечнику. Сердечник передает магнитное поле на вторичную обмотку. Вместе с магнитным потоком возникает и электрический ток, но уже с другим напряжением. Разница напряжений в первичной и вторичной обмотке пропорционально зависит от числа витков проволоки в них. За счет этой разницы величина напряжения тока в электрической сети поднимается, когда энергия передается от электростанции, и снижается перед тем, как попасть в наши дома.

Почему шумит трансформатор?

Сердечник трансформатора можно условно разделить на микроскопические кусочки. Когда трансформатор стоит без нагрузки, движение магнитных частиц в сердечнике хаотичное. Но под нагрузкой в первичной обмотке появляется магнитное поле, которое передается сердечнику. Так магнитным частицам в сердечнике придается упорядоченное движение. Под воздействием магнитного поля сталь, из которой изготовлен сердечник, деформируется. Она то сжимается, то разжимается. Это и есть явление магнитострикции в действии. При этом сердечник вибрирует. А мы слышим только гул.

В трансформатор подается переменный ток, поэтому и магнитный поток меняет направление два раза за фазу. Так как у нас в сети течет ток частотой 50 Гц, то его рабочая часть совершает колебания в два раза чаще (100 Гц). А в США, например, электрические сети пропускают ток 60 Гц. Соответственно и американские трансформаторы вибрируют с частотой 120 Гц.

Почему усиливается гул трансформатора?

Есть ряд причин, которые приводят к изменению звука работающего трансформатора.

  • Плохая изолированы витки катушек.

При нарушении изоляции проводник может начать искрить. Тогда к гудению трансформатора добавляется пощелкивание. Это явление мы наблюдаем, когда высоковольтные ЛЭП начинают сильнее гудеть в сырую погоду.

Важно! без специальных приборов уловить изменения в звуке трансформатора не так просто. Если вы слышите явное потрескивание, скорее всего изоляция сильно повреждена. Поэтому мы рекомендуем время от времени проводить замеры уровня шума работающего трансформатора.

  • Недостаточно прочно закрепленные детали трансформатора.

Плохо соединенные провода, зажимы сильно колеблются в трансформаторе под нагрузкой. Вибрация создает звук, который мы слышим. Чаще всего это просто гул, но порой из-под оболочки может слышаться настоящее грохотание.

Трансформатор не должен сильно шуметь. Допустимый уровень шума для масляных трансформаторов, например, прописан в отдельном ГОСТе 12.2.024-87. Если подстанция слишком сильно гудит, то рядом нужно устанавливать специальные экраны. В некоторых моделях можно сразу предусмотреть глушители шума.

Эксплуатация трансформаторного масла

В масляных силовых трансформаторах масло выполняет две важные функции: работает как изолирующая и как охлаждающая среда.

На состояние и качество масла влияет:

  • контакт с воздухом;
  • высокая температура;
  • солнечный свет;
  • токи короткого замыкания.

От повышения кислотности масла страдает изоляция обмоток трансфооматора. Она постепенно разрушается, а от этого понижается электрическая прочность всего оборудования.

Характеристики трансформаторного масла

Самые важные характеристики масла:

  • кислотное число – показывает, сколько едкого калия в миллиграммах нужно, чтобы нейтрализовать все свободные кислоты;
  • реакция водной вытяжки – показывает, сколько в масле нерастворимых кислот, в норме этот показатель нейтральный;
  • вязкость – от нее зависят охлаждающие свойства;
  • температура вспышки – при ней пары масла воспламеняются под действием открытого огня;
  • содержание механических примесей и взвешенного угля;
  • пробивное напряжение – максимальное напряжение, при котором масло выполняет изолирующие свойства и предохраняет изоляцию обмоток от пробоя.

Откуда берутся примеси в масле?

Примеси в масле появляются из-за растворения в нем краски, лака и изоляции. Если возникает электрическая дуга при нарушении изоляции – то в масле появляются частички угля. Кроме того, в нем выпадает со временем осадок в виде шлама – это продукты распада самого масла.

Читать еще:  Как измерить сопротивление контура заземления – обзор методик

Из-за механических примесей нарушается работа масляного трансформатора и выключателей. Примеси понижают электрическую прочность масла, поэтому изолированные ранее друг от друга части трансформатора перекрываются.

Со временем масло меняет цвет. Это происходит из-за нагрева, выпадения осадка и загрязнения смолами. В негерметичных моделях трансформаторов это неминуемый процесс. Поэтому мы рекомендуем брать масло на анализ не реже одного раза в три года.

После короткого замыкания в масляных выключателях с большим объемом масло дополнительно проверяют на содержание взвеси угля.

Если ваш трансформатор регулярно подвергается воздействию высокой температуры и влажности, проверяйте качество масла чаще раза в три года.

Характеристики масла, годного для использования:

кислотное число — не более 0,05 мг КОН на 1 кг масла;

реакция водной вытяжки — нейтральная;

механические примеси — без видимых примесей;

падение температуры вспышки — не более 5 °С от изначальной;

взвешенный уголь — отсутствие в трансформаторном масле, незначительное количество — в выключателях;

электрическая прочность для трансформаторов напряжением до 10 кВ — не ниже 20 кВ/мм;

плотность при 20 °С — 0,84—0,89 г/см3;

удельное объемное сопротивление равно 1014—1015 Ом-см при 20 °С;

tg5 при 20 °С — не более 2 %, при 70 °С — не более 7 %;

зольность — не более 0,005 %.

Инструкция по эксплуатации трансформаторного масла

Во время работы негерметичного масляного трансформатора уровень масла снижается со временем: часть испаряется, часть уходит на забор проб для контроля качества. Поэтому доливайте периодически масло.

Важно! Порой от смешения свежего масла с эксплуатируемым, качество последнего ухудшается. Поэтому смешивайте масло только после подтверждения лаборатории.

Эксплуатация масла в холодном климате

В холодных условиях на эксплуатацию масла сильно влияет температура застывания. Чем ниже опускается температура, тем гуще становится масло. Густое, оно хуже циркулирует в баке, соответственно и охлаждает трансформатор хуже. Нормы для t° застывания масла при температуре среды не ниже минус 20 °С – минус 35 °С для масляного выключателя и минус 45 °С для трансформатора. Для остальных областей температура застывания масла должна быть не выше минус 45 °С.

Берем пробы масла

  • Забор масла на анализ делайте только в сухую погоду, чтобы сырой воздух не попал в бак.
  • Проставьте на образце дату и место забора.
  • Доставьте масло на анализ в течение 7 дней.

Замедляем старение масла

Установите термосифонный фильтр. Масло тогда будет непрерывно восстанавливаться при прохождении через силикагель в фильтре. Плюс этого метода, что регенерация происходит прямо во время работы трансформатора.

Часто термосифонный фильтр дополняют азотной защитой – закачивают в бак и изоляцию вместо воздуха азот. В этом случае масло практически перестает окисляться и увлажняться.

Добавьте в масло специальные присадки против окисления – ВТИ-1. Это значительно замедлит процесс саморазрушения масла.

В трансформаторах с негерметичным масляным баком, масло рано или поздно теряет свойства. В этом случае можно его восстановить. Способов восстановления трансформаторного масла существует несколько. Подробнее о них мы расскажем в нашей следующей статье.

Мы надеемся, что наша статья поможет вам продлить срок службы вашего трансформаторного масла. Пускай ваше энергетическое хозяйство работает как часы.

О компании

Наша организация имеет штат высококвалифицированных работников, многие из которых имеют стаж работы в области энергетики более 10 лет. Кроме того мы являемся официальными представителем ОАО «МЭТЗ им. В.И. Козлова» в РФ.

Откуда берется ноль в трансформаторе

Доброе время суток.

В идеале, да, стараются отделить нулевой провод от земли (от заземления и буквально от земли), так спокойнее. Ну, одна из причин так делать — появление УЗО и ДИФ-автоматов, которые срабатывают при нарушении контура «фаза-ноль». Раньше, помимо всего прочего, элементарно экономили — тянули по производственым зданиям электрокабели с тремя фазными жилами, роль нуля и «земли» выполняли броня кабеля (которая с тех мохнатых времён местами отгорела, а местами поотломилась) и контур защитного заземления, нерушимо тянувшийся от заводской подстанции до самого дальнего сарайчика, включающий в себя рельсы кран-балок и подъездных путей, водопроводные и отопительные трубы, лотки и стойки в коллекторах.
Но с УЗО и с пятижильной системой как-то надёжнее.

По слухам, «фазу» в чистом виде стало возможно отличить от «нуля» сравнительно недавно, с появлением разных хитрых импортных индикаторов. А при социализме неизменым другом электрика была лишь контрольная лампа с парой щупов-проводков, которая поможет обнаружить электрический ток, но «фазу» и «ноль» отличить не сможет. Потому старались отсекать предохранителями (рубильниками, АПшками) оба провода, чисто для спокойствия.
Кроме того, достаточно долго сказывалось наследие старых времён, когда в бытовых сетях напряжение было чуть ли не вдвое ниже, кажется, 110 Вольт (и в придачу ко многим изделиям тех времён обязательно пылится старый понижающий трансформатор с рукояткой). Потом вдруг обнаружилось, что дешевле перейти на 220 Вольт, чем менять всю проводку во всех домах всвязи с ростом потребляемых мощностей. И тогда, действительно, оба провода цепи 220 Вольт были фазными, как сейчас в цепях на 380 Вольт.

Человеческие нервы являются отличными проводниками электричества, и посему регулярно складывются ситуации, когда электрическому току даже при наличии альтернативных соединений удобнее (короче, быстрее, приятнее) проходить через человеческое тело. Именно так работает феномен шагового электричества, когда упавший на землю высоковольтный провод или разряд молнии убивает людей и животных с широко расставлеными конечностями.

Ладно, ответ перечитал — не годится. По-моему, необходимость соединять «ноль» и землю (заземление, собственно почву под сооружением) — сочетание наследия от былой бедности (экономия цветного металла на отдельную жилу) и грозозащиты.

С уважением, Денис.

Редактировано 2 раз(а). Последний раз 30.12.12 00:24 пользователем Denver.

Давайте представим, что ноль идет изолированно от земли. В дом с ТПшки приходят три фазы и изолированный от земли ноль. В квартиры приходят разные фазы (А+0), (В+0), (С+0). Также в каждую квартиру приходит земля от контура заземления дома и все электрические приборы, которые Вы включаете в розетку, получают заземленный корпус.

Представим, что у Васи, квартира которого сидит на фазе А, у электрорадиатора пробило фазу на корпус. Вася трогает корпус. Его не дергает. Земля у нас ни с чем не соединена. Никакие автоматы при это не выбивает. Все нормально. Однако, когда у Васи включен обогреватель, на изолированной когда-то «земле» появляется потенциал фазы «А».

Прошел месяц. Вася так и не починил радиатор. Ведь он не знает (не чувствует ничего) о неисправности. Но теперь у Пети, квартира которого сидит на фазе «С», тоже пробило фазу на корпус фена. Причем старого фена, корпус которого не соединен с землей (вилка старого образца). Теперь Пете достаточно включить фен и коснуться любого заземленного металла в своей квартире, чтобы попасть по междуфазное (380В . ) напряжение.

Если же «земля» соединена с «нулем», то при первом же пробитии фазы на корпус прибора пойдет ток к.з., который отключит автомат в квартире.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector