Kontakt-bak.ru

Контракт Бак ЛТД
29 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как работает трансформатор тока

Трансформатор тока: принцип работы и использование

Работа трансформатора тока (ТТ) основана на законе электромагнитной индукции, действующим в электрических и магнитных полях, изменяющихся по форме гармоник переменных синусоидальных величин.

ТТ применяются для измерения тока в приборах электроэнергетических систем. Они обеспечивают безопасность процедуры, так как позволяют изолировать первичную цепь с высоким напряжением от измерительной цепи. Кроме этого, трансформаторы позволяют выполнить моделирование определенных процессов и обеспечивают защиту электроустановок.

Принцип работы

Действие устройств базируется на явлении электромагнитной индукции. При подаче напряжения в ТТ через витки первой обмотки проходит переменный ток, который в дальнейшем формирует переменный магнитный поток. В результате большие величины преобразуются в те значения, которые безопасны и удобны для измерения.

Первичная обмотка запускается медленно и последовательно, чаще все она представляет собой алюминиевую или медную пластину, реже используются катушки. Для замыкания на нагрузку используется вторичная обмотка, в которой создается ток, его величина пропорциональна потоку в первом элементе.

Полученный ток проходит по сердечнику и перераспределяется во все обмотки, продуцируя в них электродвижущие силы. При включении в цепь последующих обмоток в их витках также образовывается вторичный ток.

Конструкция ТТ

Данные изделия можно встретить как в небольших электронных приборах, так и в значительных по объему энергетических установках. Различия между ними заключаются лишь в габаритах.

Конструктивно трансформаторы состоят из двух элементов:

  • замкнутый магнитопровод (сердечник);
  • 2 и более обмотки (первичная и вторичные).

Все детали помещаются в специальный корпус, который служит как защита от механических повреждений.

Основные характеристики

Одним из важнейших параметров ТТ является номинальное напряжение, то есть максимальные значения напряжения, при которых устройство может корректно работать. Этот показатель указывается в паспорте трансформатора, средняя цифра составляет от 0,66 до 750 кВ.

К числу основных параметров ТТ относят и коэффициент трансформации. Он определяется как отношение первичного тока к вторичному.

Другая важная характеристика систем – номинальный ток первичной сети (протекающий по первичной обмотке). Значение может составлять от 1 А до 40 тысяч А. Показатели вторичного тока всегда равняются 1 А или 5 А, по заказу изготавливаются модели с 2 А и 2,5 А.

Еще два важных параметра устройств – это электродинамическая и термическая стойкость. Первая – характеризует максимальную амплитуду тока короткого замыкания. Если сказать проще, то это способность трансформатора противостоять разрушающему воздействию короткого замыкания.

Термическая стойкость – это максимальный показатель для короткого замыкания, которое система может выдержать за определенный промежуток времени и не пострадать от высоких температур.

Виды трансформаторов тока по назначению

Выделяют следующие разновидности:

  • Измерительные. Подобные устройства служат для передачи токов на специальные приборы измерения. Используются, если прямое подключение измерителей невозможно или небезопасно. ТТ рассчитываются таким образом, чтобы минимально влиять на первичную цепь и минимизировать любые искажения силы тока.
  • Промежуточные. Применяются в целях релейной защиты, обеспечивают изоляцию тока в первичной и вторичной обмотке.
  • Лабораторные. Отличаются повышенной точностью, предназначаются для моделирования определенной силы тока.
  • Защитные. Подключаются к токовым цепям защиты. Нередко номинальный ток таких систем существенно отличается от тока сети. Производители присваивают защитным устройствам определенный класс точности, что позволяет использовать их в качестве измерительных.

Классификация по способу исполнения

Отдельно стоит рассматривать способ исполнения ТТ, так как в этом случае также существует несколько вариантов. Выделяют следующие виды:

  • Тороидальные. Устанавливаются на кабели или шины, поэтому первичная обмотка им вообще не нужна. Первичный ток в этом случае протекает по шине, проходит через сердечник и фиксируется вторичной обмоткой.
  • Сухие. У таких изделий первичная обмотка не имеет изоляции, поэтому свойства получаемого тока зависят от используемого коэффициента преобразования.
  • Высоковольтные (масляные и газовые). Используются для дополнительной защиты от короткого замыкания, а для измерительных работ – не годятся.

Варианты установки трансформаторов

Помимо назначения и способа исполнения, трансформатор тока можно разделить на несколько видов в зависимости от способа монтажа. Выделяют следующие устройства:

  • Переносные. Мобильные модели, которые служат для диагностических и лабораторных испытаний.
  • Накладные. Применяются для установки сверху на проходные изоляторы, отличаются компактностью и имеют специальные крепления для монтажа.
  • Встраиваемые. Такие изделия встроены в электрические машины или коммутационные аппараты (например, в генераторы или похожие устройства).

Дополнительно выделяют трансформаторы для наружной установки (нужны для ОРУ – открытых распределительных устройств) и внутреннего монтажа (для ЗРУ – закрытых распределительных устройств).

Независимо от типа и способа монтажа, все устройства, кроме встроенных, имеют специальную контактную площадку. С ее помощью подсоединяется заземляющий проводник и зажим, что, в конечном счете, максимально упрощает процесс установки.

Трансформаторы тока. Виды и устройство. Назначение и работа

В системе обеспечения электрической энергией трансформаторы выполняют различные функции. Конструкции классического вида применяются для изменения определенных свойств тока до значений, наиболее подходящих для осуществления измерений. Существуют и другие виды трансформаторов, которые выполняют задачи по корректировке свойств напряжения до значений, подходящих наилучшим образом для последующего распределения и передачи электроэнергии. Трансформаторы тока согласно своему назначению имеют особенности конструкции, и перечень основных и вспомогательных функций.

Назначение

Основной задачей такого трансформатора является преобразование тока. Он корректирует свойства тока с помощью первичной обмотки, подключенной в цепь по последовательной схеме. Вторичная обмотка измеряет измененный ток. Для такой задачи установлены реле, измерительные приборы, защита, регуляторы.

По сути дела, трансформаторы тока – это измерительные трансформаторы, которые не только измеряют, но и осуществляют учет с помощью приборов. Запись и сохранение рабочих параметров тока нужно для рационального применения электроэнергии при ее транспортировке. Это одна из функций трансформатора тока. Модели конструкций бывают преобразующего типа и силовые варианты исполнений.

Устройство

Обычно все варианты исполнений трансформаторов подобного вида снабжены магнитопроводами с вторичной обмоткой, которая при эксплуатации нагружена определенными значениями параметров сопротивления. Выполнение показателей нагрузки важно для дальнейшей точности измерений. Разомкнутая цепь обмотки не способна создавать компенсации потоков в сердечнике. Это дает возможность чрезмерному нагреву магнитопровода, и даже его сгоранию.

С другой стороны, магнитный поток, образуемый первичной обмоткой, имеет отличие в виде повышенных эксплуатационных характеристик, что также приводит к перегреву магнитопровода. Сердечник трансформатора тока изготавливают из нанокристаллических аморфных сплавов. Это вызвано тем, что трансформатор может работать с более широким интервалом эксплуатационных величин, которые зависят от класса точности.

Отличие от трансформатора напряжения

Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.

Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.

Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.

Виды
Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:
  • Сухие.
  • Тороидальные.
  • Высоковольтные (масляные, газовые).

У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.

Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.

Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.

Принцип работы и применение

При эксплуатации в цепях с большим током появляется необходимость использовать небольшие устройства, которые бы помогали контролировать нужные параметры тока бесконтактным методом. Для таких задач широко применяются токовые трансформаторы. Они измеряют ток, а также выполняют много вспомогательных функций.

Такие трансформаторы производятся в значительном количестве и имеют разные формы и модели исполнения. Отличительными параметрами этих устройств является интервал измерения, класс защиты устройства и его конструкция.

В настоящее время новые трансформаторы тока работают по простому методу, который был известен в то время, когда появилось электричество. При действии с нагрузкой в проводе образуется электромагнитное поле, улавливающееся чувствительным прибором (трансформатором тока). Чем сильнее это поле, тем больший ток проходит в проводе. Нужно только рассчитать коэффициент усиления прибора и передать сигнал в управляющую цепь, либо в цепь контроля.

Трансформаторы выполняют функцию рамки на силовом проводе и реагируют на значение сети питания. Современные измерительные трансформаторы выполнены из большого числа витков, имеют хороший коэффициент трансформации. Во время настройки устройства определяют вольтамперные свойства для расчета точки перегиба кривой. Это нужно для выяснения участка графика с интервалом устойчивости функции трансформатора, который также имеет свой коэффициент усиления.

Кроме задач измерения, измеритель дает возможность разделить цепи управления и силовые цепи, что является важным с точки зрения безопасности. Применяя современные трансформаторы тока, получают сигнал небольшой мощности, не опасный для человека и удобный в работе.

В качестве нагрузки такого устройства может быть любой прибор измерения, который может работать с ним. При большом расстоянии оказывает влияние внутреннее сопротивление линии. В этом случае прибор калибруют. Также, сигнал можно передавать в цепь защиты и управления на основе электронных приборов.

С помощью них производят аварийное отключение линий. Приборы производят контроль сети, определяют нужные параметры. При проектировании встает задача по подбору прибора для измерения и контроля. Трансформаторы выбирают по средним параметрам сети и конструкции прибора измерения. Чаще всего мощные установки комплектуются своими измерительными устройствами.

На современном производстве широко применяются измерительные трансформаторы. Также они нашли применение и в обыденной жизни. Чувствительные приборы осуществляют защиту дорогостоящего оборудования, создают безопасные условия для человека. Они работают в электроцепях, создавая контроль над эксплуатационными параметрами.

Коэффициент трансформации

Этот коэффициент служит для оценки эффективности функционирования трансформатора. Его значение по номиналу дается в инструкции к прибору. Коэффициент означает отношение тока в первичной обмотке к току вторичной обмотки. Это значение может сильно меняться от числа секций и витков.

Нужно учитывать, что этот показатель не всегда совпадает с фактической величиной. Есть отклонение, определяемое условиями работы прибора. Назначение и метод работы определяют значения погрешности. Но этот фактор также не может быть причиной отказа от контроля коэффициента трансформации. Имея значение погрешности, оператор сглаживает ее аппаратурой специального назначения.

Установка

Простые трансформаторы тока, работающие на шинах, устанавливаются очень просто, и не требуют инструмента или техники. Прибор ставится одним мастером при помощи крепежных зажимов. Стационарные требуют оборудования фундамента, монтажа несущих стоек. Каркас крепится сваркой. К этому каркасу монтируется аппаратура. Комплект оснащения зависит назначение устройства и его особенности.

Подключение

Чтобы облегчить процесс соединения проводов с устройством, изготовители маркируют комплектующие детали цифровым и буквенным обозначением. С помощью такой маркировки операторы, которые обслуживают устройство, могут легко сделать соединение элементов.

Способ подключения взаимосвязан с устройством, принципом работы и назначением прибора. Также оказывает влияние и схема обслуживаемой сети. Трехфазные линии с нейтралью предполагают установку прибора только на двух фазах. Эта особенность вызвана тем, что электрические сети на напряжение 6-35 киловольт не оснащены нулевым проводом.

Контроль

Это мероприятие состоит из разных операций: визуальный осмотр, дается оценка всей конструкции, проверяется маркировка, паспортные данные и т.д. Далее, осуществляется размагничивание трансформатора с помощью медленного повышения тока на первичной обмотке. Далее, величину тока уменьшают.

Затем готовят главные мероприятия по измерению параметров. Поверка основывается на оценке правильности полярности клемм катушек по нормам, также определяют погрешность с дальнейшей сверкой с паспортными данными.

Безопасность

Основные опасности при функционировании измерительных трансформаторов обусловлены качеством намотки катушек. Необходимо учитывать, что под витками действует основа из металла, которая в открытом виде создает опасность и угрозу для обслуживающего персонала.

Поэтому создается график обслуживания, по которому проводится периодическая проверка устройства. Персонал обязан следить за состоянием обмоток катушек. Перед проведением проверки трансформатор отключается и подключаются шунтирующие закоротки и заземление обмотки.

Трансформатор тока. Токовые клещи. Схема. Устройство. Характеристики. Принцип работы. Проектирование. Подключение. Формулы

Принцип действия токового трансформатора. Проектирование. Формулы для расчета (10+)

Трансформатор тока. Принцип действия. Расчет

1 2 3

Токовый трансформатор — измерительный прибор, предназначенный для измерения силы переменного тока. Применяются трансформаторы тока тогда, когда нужно измерить ток большой силы. Токовые клещи также работают по принципу трансформатора тока. Есть способы измерения постоянного тока с помощью токовых клещей, но тут применяется эффект магнитного усилителя. Об этом будет отдельная статья. Подпишитесь на новости, чтобы не пропустить. Сейчас остановимся на измерении переменного тока.

Принцип действия измерительного трансформатора тока

Трансформатор тока — обычный трансформатор, только включенный специальным образом и со специальным числом витков в обмотках. Первичная обмотка трансформатора тока обычно состоит из одного витка, то есть просто провода, пропущенного через тороидальный сердечник трансформатора. Именно через этот провод проходит измеряемый ток. Иногда, для повышения точности измерений, делают два витка, то есть пропускают провод через сердечник дважды. Трансформаторы тока могут выполняться не только на тороидальных сердечниках, но и на других. В любом случае провод с измеряемым проводом должен образовать полный виток. Для Ш — образного сердечника нужно пропустить провод в оба окна.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Со вторичной обмотки снимается ток, который уже подлежит измерению. Для нормального функционирования токового трансформатора необходимо, чтобы его вторичная обмотка была зашунтирована низкоомной нагрузкой. Причем напряжение на вторичной обмотке при максимальном токе не должно быть слишком большим, чтобы не вызвать насыщение сердечника.

Формулы для расчета

Расчет трансформатора тока строится на простом соотношении:

[Амплитуда силы тока вторичной обмотки, А] = [Амплитуда переменной составляющей силы тока первичной обмотки, А] * [Число витков первичной обмотки] / [Число витков вторичной обмотки]

[Амплитуда напряжения на вторичной обмотке, В] = [Амплитуда силы тока вторичной обмотки, А] * [Сопротивление шунтирующего резистора, Ом] + [Напряжение насыщения диодов, В]

Если в системе не используются выпрямительные диоды, то последнее слагаемое считается равным нулю. Если применяется диодный мост, то нужно брать двойное напряжение насыщения диода плеча моста, так как при каждой полярности входного напряжения ток проходит через два диода моста.

[Мощность, рассеиваемая нагрузочным резистором, Вт] = [Действующее значение силы тока вторичной обмотки, А] ^ 2 * [Сопротивление шунтирующего резистора, Ом]

Чтобы определить действующее значение силы тока, нужно точно знать форму сигнала. Форма сигнала может меняться во времени, например, при широтно-импульсной модуляции. Обычно применяется такое соотношение:

[Мощность, рассеиваемая нагрузочным резистором, Вт]

Среднее значение силы тока, если ток симметричный, равно нулю. Коэффициент наполнения зависит от формы сигнала. Для меандра он равен 1, для синусоидального напряжения около 9.5, для ШИМ — сигналов может быть от 0 до 1. Для наших расчетов достаточно принять его равным 1, так как нам нужно получить для индукции оценку сверху.

1 2 3

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

[Максимальное значение индукции, Тл] = [1.257E-3] * [Среднее значение силы тока первичной обмотки, А] * [Магнитная проницаемость сердечника] * [Количество витков первичной обмотки] / [Длина средней магнитной линии сердечника, мм] + [1.257E6] * [Амплитуда напряжения на вторичной обмотке, В] * [Коэффициент наполнения] / (2 *[Площадь сечения магнитопровода, кв. мм] * [Количество Читать ответ.

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

Измерение действующего (эффективного) значения напряжения, силы тока. .
Схема прибора для измерения действующего значения напряжения / силы тока.

Защита силового ключа от перенапряжения. Сброс скачков напряжения на т.
Как защитить силовой транзистор от пробоя броском высокого напряжения. Описание .

Трансформаторы тока и напряжения

Перед тем, как рассказать об измерительных трансформаторах – немного теории. Трансформатор – элемент электрической цепи, преобразующий величину переменного напряжения. Трансформаторы могут быть:

  • понижающими, выдающие на выходе меньшее напряжение, чем на входе;
  • повышающими, выполняющие противоположное преобразование;
  • разделительные, не изменяющие величину напряжения, применяющиеся для гальванической развязки между участками электрической сети.

Повышающие и понижающие трансформаторы обратимы: если подать номинальное выходное напряжение трансформатора на его вторичную обмотку, на первичной мы получим номинальное входное напряжение.

С токами в обмотках происходит обратная картина. Первичная обмотка рассчитывается на ток, соответствующий номинальной мощности трансформатора. Под мощность выбирается и сечение магнитопровода, и диаметр обмоточного провода первичной обмотки.

Ток вторичной обмотки понижающего трансформатора может быть больше тока в первичной во столько раз, во сколько меньше ее напряжение. Это отношение называется коэффициентом трансформации. Поэтому сечение обмоточного провода вторичной обмотки у понижающего трансформатора больше. У понижающего – все наоборот. У разделительного – все одинаково.

  1. Зачем нужны измерительные трансформаторы напряжения
  2. Трансформаторы напряжения и их конструкция
  3. Зачем нужны трансформаторы тока
  4. Принцип действия и конструкция трансформаторов тока
  5. Видео про трансформаторы тока

Зачем нужны измерительные трансформаторы напряжения

В электроустановках до 1000 В измерение напряжения производят, подключая вольтметры непосредственно к шинам или другим контролируемым участкам сети. Но в сетях 6 кВ и выше это невозможно, потому что:

  • при измерении высокого напряжения требуется понизить его величину до размера, воспринимаемого рамкой стрелочного прибора или электронным преобразователем цифрового. Резистивные делители не выполнят задачу с требуемой точностью, а применение понижающего трансформатора сделает прибор громоздким;
  • изоляция проводников для подключения прибора должна выдерживать номинальное напряжение электроустановки. Кроме того, должны соблюдаться междуфазные расстояния, требуемые ПУЭ. Выполнить это невозможно.

Трансформатор напряжения НОЛ

Поэтому для измерений величину напряжения понижают, и для этого нужен трансформатор напряжения

Трансформаторы напряжения и их конструкция

На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В. Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более. Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.

Конструктивно трансформаторы напряжения выполняются:

  • элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
  • один корпус содержит трансформатор для преобразования всех трех фаз.

Трехфазный трансформатор напряжения НАМИ

Первичные обмотки трехфазных трансформаторов соединяются в звезду.

Вторичных обмоток у трансформаторов напряжения несколько:

  • обмотка для приборов учета, имеющая класс точности 0,5s;
  • обмотка для измерительных приборов – класс точности 0,5;
  • обмотка для устройств релейной защиты – класс 10Р;
  • обмотка для разомкнутого треугольника – класс 10Р.

Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность, превышать которую нельзя.

Трансформатор напряжения НОМ-10

Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников. Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.

Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.

Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.

Три однофазных трансформатора ЗНОЛ, собранные вместе

А теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации. Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением. Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.

Зачем нужны трансформаторы тока

Одна из причин, из-за которых в электроустановках выше 1000 В устанавливают трансформаторы тока – та же, что и для трансформаторов напряжения. Невозможно обеспечить изоляцию цепей для подключения приборов.

Но есть дополнительные факторы, вынуждающие использовать их и в электроустановках выше 1000 В:

  • максимальный ток, на который рассчитаны электросчетчики прямого включения – 100 А. Токи выше 100 А требуется понизить.
  • включение амперметров последовательно с нагрузкой снижает надежность электроснабжения;
  • вольтметр подключается к шинам через предохранители или автоматический выключатель, выводы амперметра защитить невозможно. Ток короткого замыкания в амперметре равен току КЗ на шинах. Ошибки в эксплуатации приводят к тяжелым последствиям, а неисправности прибора выводят его из строя навсегда. Поэтому и требуется выполнить гальваническую развязку амперметра с сетью.
  • Заменить амперметр прямого подключения можно, только отключив нагрузку.

Принцип действия и конструкция трансформаторов тока

Трансформатор тока тоже имеет первичную и вторичную обмотку. Но особенность его в том, что первичная обмотка имеет один или несколько витков, а в большинстве изделий представляет собой шину, проходящую через корпус трансформатора. Вариант – трансформаторы, не имеющие собственной первичной обмотки. Они надеваются на шину с измеряемым током или через них пропускается провод, жила кабеля.

Варианты конструктивного исполнения трансформаторов тока до 1000 В

Вторичная обмотка у трансформатора тока на напряжение до 1000 В одна, но у высоковольтных их – минимум две, но бывает и больше. Работает он аналогично повышающему трансформатору, поэтому – все, что сказано в начале статьи о соотношении токов в них для него справедливо.

Номинальный ток вторичной обмотки трансформатора тока всегда равен 5 А, на какой бы ток не была рассчитана первичная. Классы точности обмоток для подключения аппаратуры различаются так же, как и у трансформаторов напряжения.

Но вот подключить к трансформатору тока, используемому для учета электроэнергии, ничего больше не получится. По правилам, кроме счетчика, там не должно быть ничего. И если для аппаратов выше 1000 В это требование легко выполнить (один трансформатор имеет несколько обмоток), то для электроустановок до 1000 В при необходимости устанавливают по два трансформатора на одну фазу: один – для учета, другой – для всего остального (амперметры, ваттметры, устройства защиты, компенсация реактивной мощности). Выводы вторичной обмотки для коммерческого учета у всех трансформаторов закрываются крышкой и пломбируются.

Установка трансформаторов тока в ячейке выше 1000 В

Трансформатор тока должен работать в замкнутой на нагрузку или накоротко вторичной обмоткой. Иначе на ней наводится ЭДС далеко не безопасной величины как для людей, так и для электрооборудования. При обрыве во вторичных цепях можно получить смертельный удар током, даже проведя рукой рядом с клеммами амперметра или счетчика. А электронные схемы на входе приборов выйдут из строя под действием высокого напряжения.

Поэтому для замены амперметров и электросчетчиков в токовых цепях устанавливают специальные клеммы, на которых перед демонтажем прибора обмотку трансформатора закорачивают. Для приборов учета рядом устанавливают клеммы для отключения цепей напряжения. Это функции совмещены в специальном устройстве, называющимся «колодка клеммная измерительная». Для коммерческих цепей учета эти коробки пломбируются, для чего винт, крепящий ее крышку, имеет прорезь в головке (как у винтов крепления крышки корпуса электросчетчика).

Видео про трансформаторы тока

Почему нельзя размыкать вторичную обмотку трансформатора тока и зачем ее обязательно заземлять? Попутно вы узнаете о технических характеристиках и конструкции трансформаторов тока, особенностях их применения.

Устройство и принцип работы трансформатора тока

Время на чтение:

Трансформатор тока (ТТ) — статическое электромагнитное устройство, где первичная обмотка подсоединена к источнику питания, а вторая — к измерительным или защитным аппаратам, обладающим малым сопротивлением. Преобразователи широко применяются для измерения величины тока и в агрегатах релейной защиты энергетических систем. Они обеспечивают полную безопасность проведения измерений в высоковольтных линиях.

Особенности конструкции

При работе трансформатора тока вторичная обмотка всегда находится под нагрузкой, сопротивление которой регулируется требованиями к точности коэффициента трансформации. Допускается незначительное отклонение сопротивления от указанного в паспорте устройства.

Если произойдет увеличение нагрузки, то во второй обмотке резко возрастет напряжение, что может привести к пробою изоляции и поломке устройства. Такая ситуация создает угрозу безопасности сотрудникам, которые обслуживают электрический прибор. В устройство трансформатора тока входят:

  • основание;
  • магнитопровод (сердечник);
  • первичная обмотка;
  • вторичная обмотка;
  • клеммник для подсоединения кабеля от источника питания;
  • заземляющий контакт.

Первичная обмотка изготавливается в виде катушки, закрепленной на магнитопроводе, или как шина. Согласно конструктивного исполнения в некоторых устройствах нет встроенной первичной катушки, а дополняется она обслуживающим персоналом путем соединения отдельного провода через специальное окно.

Корпус устройства выполняет роль изоляции и предохранения обмоток от внешних повреждений. В последних моделях устройств сердечники изготавливаются из нанокристаллических сплавов, которые значительно увеличивают класс точности прибора.

Из-за больших потерь в сердечнике устройство начинает сильно нагреваться, что приводит к износу или выходу из строя его изоляции. Вторая обмотка в разомкнутом состоянии также создает негативное явление, так как происходит перегрев и выгорание магнитного провода.

Основной характеристикой прибора считается коэффициент трансформации, который обозначает отношение номинального тока в первичной обмотке к такому же значению во вторичной. Реальное значение этого коэффициента несколько отличается от номинального, что объясняется степенью погрешности прибора.

Связано это с тем, что в магнитных конструкциях имеются потери, связанные с намагничиванием и нагревом магнитопровода. Чтобы несколько сгладить эти погрешности производители используют витковую коррекцию.

Назначение устройства

По своему назначению трансформаторы тока относятся к специальным вспомогательным устройствам, применяемых в комплексе с различной измерительной аппаратурой и защитными механизмами в сетях переменного тока.

Принципом работы трансформатора тока считается преобразование любых величин, которые приобретают более воспринимаемые значения для получения информации и обеспечения питания защитных реле. Благодаря изоляции аппаратов, сотрудники обслуживающей организации надежно защищены от поражения током. Все виды трансформаторов могут служить для двух функций:

  1. Измерение силы тока в цепи — с их помощью передаются данные на измерительные приборы, которые подключены ко вторичной обмотке. В этом случае трансформатор может преобразовать ток высокой величины в более приемлемые параметры.
  2. Предохранительные действия — устройства в первую очередь передают данные на защитные аппараты и приборы управления. С помощью трансформаторов электрические показатели преобразуются для питания релейного оборудования.

По своему назначению и принципу действия трансформаторы тока способствуют подсоединению измерительных приборов к энергетическим линиям высокого напряжения, когда нет возможности подключить их напрямую. Они нужны для передачи снятых показаний на аппаратуру измерения, которая подключается ко вторичной обмотке.

Кроме того, преобразователи проводят наблюдение за состоянием электрического тока в цепи, к которому они подключены. При подсоединении к силовой автоматической защите устройство проводит мониторинг сетей, наличие и состояние заземления. Если ток достигает максимального значения, то автоматически включается защита и останавливается работа всего оборудования.

Принцип действия

Работает трансформатор тока на основе закона электромагнитной индукции. Из внешнего источника питания поступает напряжение на клеммы устройства, которые непосредственно связаны с первичной обмоткой, обладающей конкретным количеством витков. В результате образуется магнитный поток вокруг катушки, который улавливает сердечник.

Благодаря этому, потери показаний в процессе преобразования будут незначительными. Когда ток пересекает вторичную обмотку, то магнитный поток активирует электродвижущую силу, под влиянием которой происходит преодоление сопротивления катушки и нагрузки на выходе.

Параллельно с этим процессом происходит снижение напряжения со вторичной обмотки. Если происходит короткое замыкание во вторичной обмотке или подключение к ней нагрузки, то под воздействием электродвижущей силы в ней возможно определение вторичного тока.

Классификация приборов

Все разновидности агрегатов классифицируются в зависимости от конструкции и того, какими техническими показателями обладают. Кроме измерительных и защитных трансформаторов, бывают промежуточные виды этих преобразователей. В этом случае прибор подключается для проведения измерения в цепь релейной защиты.

Выделяются лабораторные виды преобразователей, которые обладают повышенной точностью измерения и множеством коэффициентов трансформации. Токовые трансформаторы подразделяются:

  1. По способу установки — преобразователь предназначен для наружного и внутреннего монтажа. Компактные модели могут быть переносными или встраиваются в машины и электрические аппараты. Наружный и внутренний монтаж подразумевает проходной или опорный способ установки.
  2. В зависимости от типа первичной обмотки — оборудование подразделяется на одновитковые, стержневые, многовитковые, катушечные и шинные устройства.
  3. При изолировании трансформаторов применяются: бакелит, фарфор и другие материалы. Некоторые марки устройств для изоляции заливаются компаундом.

От того как устроен преобразователь, он может иметь одну или две ступени. Эксплуатационное напряжение устройств находится в диапазоне до 1 тыс. В и выше. Все необходимые технические данные имеют буквенные, цифровые обозначения и присутствуют на соответствующих бирках.

Популярные модели

Любая выпускаемая марка прибора обладает отдельными параметрами и техническими характеристиками. Отечественные производители выпускают большое количество этих устройств. К ним относятся:

  1. ТОЛ-НТЗ-10−01 — выпускается Невским трансформаторным заводом «Волхов» и используется для передачи показаний к измерительной аппаратуре. Кроме того, его применяют в электрических цепях с устройствами защиты и управления. Преобразователь выпускается в виде опорной конструкции второй категории размещения. Прибор применяется в сетях с напряжением до 10 кВ и обладает сроком службы до 30 лет.
  2. ТОП-0,66 — применяются в энергетических сетях переменного тока с напряжением до 0,66 кВ. Корпус устройства изготовлен из негорючего материала. Эксплуатация агрегата возможна в диапазоне температур от -45 до +50 °C и в любом положении. Первичная шина трансформатора состоит из меди, покрытой оловом.
  3. ВВ, ВВО — проходные шинные трансформаторы тока, изготовленные в компаундном корпусе. Используют приборы в сетях переменного тока напряжением до 24 кВ. Обладают механическим изменением коэффициента трансформации на обеих обмотках.

Трехфазные устройства подключаются в сеть «треугольником» или «звездой». В первом случае удается получить большое значение тока во вторичной обмотке, а во втором — возможно отследить значение тока в каждой фазе.

Как работает трансформатор тока

В процессе эксплуатации энергетических систем довольно часто решаются вопросы, связанные с необходимостью каких-либо установленных электрических величин в аналогичные величины с измененными значениями в определенной пропорции. Для этого необходимо знать, как работает трансформатор тока, действие которого основано на законе электромагнитной индукции, применяемого для электрических и магнитных полей. В процессе работы выполняется преобразование первичной величины вектора тока, протекающего в силовой цепи, во вторичный ток с пониженным значением. Во время такого преобразования соблюдается пропорциональность по модулю и точная передача угла.

В каком режиме работает трансформатор тока

Работа трансформатора может осуществляться в нескольких режимах. Одним из них является режим холостого хода, при котором вторичная обмотка находится в разомкнутом состоянии. Потребление тока первичной цепью самое минимальное, поэтому он называется током холостого хода. Магнитное поле холостого хода образуется вокруг первичной обмотки. Данный режим считается абсолютно безвредным для трансформатора.

Основным является режим нагрузки, в который трансформатор переходит из режима холостого хода. Во вторичной обмотке начинается течение тока, создающего магнитный поток, направленный против магнитного поля в первичной обмотке. В первый момент значение этого магнитного потока уменьшается, что приводит к уменьшению ЭДС самоиндукции в первичной обмотке.

Поскольку внешнее напряжение, приложенное к генератору, не изменяется, это приводит к нарушению электрического равновесия между приложенным напряжением и ЭДС самоиндукции, а ток в первичной обмотке увеличивается. Соответственно увеличивается и магнитный поток, а также электродвижущая сила самоиндукции. Однако значение тока в первичной обмотке будет выше, чем в режиме холостого хода. Таким образом, сумма магнитных потоков первичной и вторичной обмоток в режиме нагрузки, будет равна магнитному потоку первичной обмотки трансформатора в режиме холостого хода.

В режиме нагрузки, когда появляется вторичный ток, происходит возрастание первичного тока. Это приводит к падению напряжения во вторичной обмотке и его уменьшению. В случае снижения нагрузки, при которой вторичный ток уменьшается, наступает уменьшение и размагничивающего действия вторичной обмотки. Наблюдается рост магнитного потока в сердечнике и соответствующий рост самоиндукции ЭДС. Данный процесс, касающийся электрического равновесия, продолжается до тех пор, пока оно полностью не восстановится.

Одним из основных считается и режим короткого замыкания, при котором во вторичной цепи будет практически нулевое сопротивление. Ток во вторичной цепи достигает максимального значения, магнитное поле во вторичной обмотке также будет иметь наивысший показатель. Одновременно, магнитное поле в первичной обмотке уменьшается и становится минимальным. Следовательно, происходит и снижение индуктивного сопротивления в этой обмотке. В то же время возрастает ток, потребляемый первичной цепью. Данная ситуация приводит к возникновению режима короткого замыкания, опасного не только для самого трансформатора, но и для всей цепи. Защита от короткого замыкания обеспечивается путем установки предохранителей в первичной или вторичной цепи.

Особенности работы трансформатора тока в разных условиях:

  • Режим работы приближается к короткому замыканию, поскольку сопротивление нагрузки, подключаемой совместно со вторичной обмоткой, имеет минимальное значение. Фактически, работа трансформатора тока происходит в режиме короткого замыкания.
  • Трансформатор тока своим режимом работы существенно отличается от других трансформаторных устройств. При изменении нагрузки в обычном трансформаторе, значение магнитного потока в сердечнике не изменяется при условии постоянно приложенного напряжения.

В каком режиме работает измерительный трансформатор напряжения

Важнейшими элементами высоковольтных цепей являются измерительные трансформаторы напряжения. Данные устройства предназначены для понижения высокого напряжения, после чего пониженное напряжение может питать измерительные цепи, релейную защиту, автоматику и учет, а также другие элементы. Таким образом, трансформаторы напряжения позволяют измерять напряжение в высоковольтных сетях, от них поступает питание на катушки реле минимального напряжения, счетчики, ваттметры, фазометры, а также на аппаратуру, контролирующую состояние изоляции сети.

С помощью трансформатора осуществляется понижение высокого напряжения до стандартных значений. С их помощью происходит разделение измерительных цепей и релейной защиты с первичными цепями высокого напряжения. Подключение первичной обмотки производится к источнику входного напряжения сети, а вторичная обмотка соединяется параллельно с катушками реле и измерительных приборов. Работа трансформатора напряжения осуществляется в режиме, приближенном к холостому ходу. Это связано с высоким сопротивлением приборов, подключенных параллельно и низким током, потребляемым ими.

Для обеспечения нормальной работы вторичных цепей установка трансформаторов напряжения может выполняться не только на шинах подстанции, но и на каждой точке подключения. Перед началом электромонтажных работ необходимо осмотреть устройство, проверить целостность изоляции, исправность узлов и элементов. С целью дальнейшей безопасной эксплуатации трансформатора, его корпус и вторичная обмотка заземляется. В результате, создается защита от возможного перехода высокого напряжения во вторичные цепи в случае пробоя изоляции.

Каждый трансформатор обладает определенной номинальной погрешностью и классами точности, составляющими 0,2; 0,5; 1; 3. Уровень погрешности зависит от конструкции магнитопровода, размеров вторичной нагрузки и других факторов. Компенсировать погрешность напряжения можно, если уменьшить количество витков первичной обмотки и компенсировать угловую погрешность специальными компенсирующими обмотками.

Принцип действия ТТ и их назначение

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и ТН.

  • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
  • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
  • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Сохраните в закладки или поделитесь с друзьями

Назначение, устройство и принцип действия трансформаторов тока

В силовых цепях 380 Вольт с большими токами согласно ПУЭ используется преобразовательное устройство особой конструкции, называемое трансформатор тока. С его помощью удается снизить величину токового показателя в заданное техническими характеристиками число раз. Для понимания принципа работы таких преобразователей потребуется ознакомиться с их конструкцией.

  1. Особенности конструкции
  2. Классификация трансформаторов тока
  3. Схемы подключения
  4. Основные параметры и характеристики трансформаторов тока

Особенности конструкции

Электрические трансформаторы тока содержат в своем составе следующие конструктивные элементы:

  • замкнутый сердечник (магнитопровод);
  • первичную силовую обмотку;
  • вторичную (понижающую) катушку.

Первичная обмотка включается последовательно с контролируемой цепью, так что по ней протекает весь фазный ток. Вторичная же катушка нагружается на подключаемое к сети устройство – защитное реле или измерительный прибор. За счет разницы числа витков в каждой из катушек токовая составляющая во вторичной обмотке понижается до значения, определяемого коэффициентом трансформации.

Устройство трансформатора тока

Поскольку сопротивление нагрузочных цепей незначительно, считается, что эти приборы работают в режиме, очень близком к КЗ.

Обычно они имеют несколько групп вторичных обмоток, каждая из которых используется для своих целей. К ним могут подключаться:

  • защитные приборы (реле напряжения, например);
  • аппаратура учета и диагностики;
  • контрольное оборудование.

Существенное отличие ТТ от родственных ему трансформаторов напряжения состоит в выполняемых этими приборами функциях и принципе действия. Трансформаторы тока прежде всего обеспечивают защиту подключаемой нагрузки и заданную точность проводимых измерений. Для второго типа характерен чисто преобразовательный режим работы, имеющий отношение только к эксплуатации в силовых цепях.

Классификация трансформаторов тока

Понять, для чего предназначается ТТ, поможет ознакомление с общепринятой классификацией этих приборов. Известные образцы преобразовательных устройств отличаются по следующим основным признакам:

  • Назначение – выполняемая каждым конкретным прибором функция.
  • Способ установки по месту эксплуатации.
  • Особенности конструкции, включая общее количество витков в первичной обмотке.
  • Рабочее напряжение и вид изоляции проводников.
  • Число ступеней трансформации.

Согласно назначению известные образцы ТТ делятся на лабораторные, защитные, измерительные и так называемые «промежуточные» устройства.

Высоковольтная влб-1Э-6У1

Последняя категория предназначается либо для подключения измерительных приборов, либо для выравнивания токовых значений в системах дифференциальной защиты.

По способу монтажа различают следующие виды:

  • только для наружной установки (в шкафах ОРУ);
  • для схем внутреннего монтажа (в ЗРУ);
  • преобразователи, встроенные в электрические агрегаты и коммутационные аппараты, к которым относятся генераторы и силовые трансформаторы;
  • накладные устройства, монтируемые поверх конструкции (на проходных изоляторах).

Трансформатор тока IEK ТТИ 1000/5А 10ВА, кл.т. 0,5S

По конструктивному исполнению первичной обмотки токовые устройства разделяются на многовитковые, одновитковые и шинные модели. В соответствии с рабочим напряжением цепей, в которые устанавливаются эти приборы, они делятся на трансформаторы, устанавливаемые в сетях до и более 1000 Вольт.

По типу используемых в них изолирующих материалов эти изделия подразделяются на следующие виды:

  • с «сухой» изоляцией на основе фарфора или эпоксидной смолы;
  • с бумажно-масляной либо конденсаторной защитой;
  • с компаундной заливкой.

По количеству имеющихся ступеней трансформации все известные приборы, устанавливаемые в цепи питания, бывают одноступенчатыми и двухступенчатыми (другое их название – «каскадные»).

Схемы подключения

Различные схемы подключения трансформаторов тока в основном отличаются порядком коммутации первичных и вторичных обмоток. Для первой из них характерна простейшее последовательное включение (так называемая «врезка») в разрыв контролируемой фазной шины. Другое дело – вторичные цепи, состоящие из нескольких обмоток, которые могут расключаться по следующим схемам:

  • «Полная звезда, используемая при необходимости контролировать токовые параметры в каждой из фаз.
  • «Звезда неполного типа», применяемая, когда нет нужды в контроле всех линейных измерительных цепей.
  • Схема фиксации токов «нулевой последовательности», в состав которой входит контрольное реле.

В этом случае вторичные обмотки включаются по схеме неполной звезды. Распространенная схема под названием «проверка токов нулевой последовательности» образуется путем подключения вторичных обмоток в полную звезду. При этом используемое в ней контрольное реле включается в разрыв общего провода («нуля»). При расключениях этого типа проходящий через обмотку ток слагается из всех трех фазных векторов. Если нагрузки сбалансированы, при однофазных или двухфазных коротких замыканиях в реле выделяется возникшая из-за дисбаланса составляющая.

Основные параметры и характеристики трансформаторов тока

Технические параметры любого трансформатора тока описываются следующими основными показателями:

  • класс прибора;
  • номинальное напряжение;
  • токи в первичной и вторичной катушках;
  • коэффициент трансформации переменного тока (в виде соотношения);
  • допустимая погрешность измерений при подключении счетчика электроэнергии;
  • проницаемость и сечение магнитопровода (сердечника);
  • величина магнитного пути.

Номинал напряжения в киловольтах обычно приводится в паспорте, прикладываемом к каждому конкретному прибору. Его рабочее значение варьируется в диапазоне от 0,66 до 1150 кВ. Для получения более полных сведений об этом и других показателях следует ознакомиться со справочной литературой, касающейся подключения трансформаторов к электрическим счетчикам.

Величину номинального тока в первичной катушки также узнают из сопровождающей технической документации. В зависимости от конкретной модели преобразовательного прибора этот параметр может располагаться в интервале от 1,0 до 40 тысяч Ампер. Значения токового показателя во вторичной катушке обычно выбираются 1,0 или 5,0 Ампер (в зависимости от параметров первичной цепи).

Иногда под заказ производителем изготавливаются приборы с вторичными токами 2,0 или 2,5 Ампера.

Коэффициент трансформации (кратность) – это показатель того, в какой пропорции или отношении находятся токи первичной и вторичной катушек. Под предельной кратностью понимается отношение максимального первичного тока к его номинальному значению при условии, что полная погрешность при фиксированной вторичной нагрузке не превышает 10%. Под номинальной предельной кратностью подразумевается тот же показатель при оптимальной нагрузке. Этот параметр характеризует возможность нормального функционирования защитных приборов в аварийных режимах.

Токовая погрешность

Согласно ГОСТ 7746-89 существуют три типа погрешностей для ТТ – токовая, угловая и полная. Они являются количественными показателями отклонений значений вторичного тока, умноженного на номинальный коэффициент, от первичного показателя.

Стандартом предписывается вычислять такие погрешности только в установившемся (с постоянными параметрами) режиме работы системы и только если форма первичного тока не отличается от синусоидальной.

Упоминавшаяся при описании кратностей токовая погрешность характеризует относительную разницу действующих значений токов, выражающуюся в процентах. Ее угловой эквивалент определяется как погрешность между векторами двух действующих токовых составляющих: основной для первичной цепи и первой гармоники – для вторичной. На основании этих двух величин вычисляется полная погрешность путем их суммирования по приведенной в инструкции формуле.

Основное назначение измерительных трансформаторов тока – подключение приборов учета энергии, используемых для обслуживания трехфазных линий питания.

0 0 голоса
Рейтинг статьи
Читать еще:  Какой способ прокладки домашней электропроводки выбрать
Ссылка на основную публикацию
ВсеИнструменты