Kontakt-bak.ru

Контракт Бак ЛТД
72 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как проверить автоматический выключатель на срабатывание

Проверка автоматических выключателей

Автоматические выключатели служат для защиты электрических цепей напряжением до 1000 В от аварийных режимов работы. Надежная защита электрических цепей данными электрическими аппаратами обеспечивается только в том случае, если автоматический выключатель находится в исправном техническом состоянии, а его фактические рабочие характеристики соответствуют заявленным. Поэтому проверка автоматических выключателей является одним из обязательных этапов работ при вводе в работу электрических щитов различного назначения, а также при периодической их ревизии. Рассмотрим особенности проверки автоматических выключателей.

В первую очередь необходимо произвести визуальный осмотр аппарата. На корпусе автоматического выключателя должна быть нанесена необходимая маркировка, не должно быть видимых дефектов, неплотного прилегания частей корпуса. Необходимо произвести несколько операций включения и отключения аппарата вручную.

Автомат должен фиксироваться во включенном положении и свободно отключаться. Также необходимо обратить внимание на качество зажимов автоматического выключателя. При отсутствии видимых повреждений переходим к проверке его рабочих характеристик.

Автоматический выключатель конструктивно имеет независимый, тепловой и электромагнитный расцепители. Проверка автоматического выключателя заключается в проверке работоспособности перечисленных расцепителей при различных условиях. Данный процесс называется прогрузкой.

Прогрузка автоматических выключателей осуществляется на специальной испытательной установке, при помощи которой можно подать на испытуемый аппарат необходимый ток нагрузки и зафиксировать время его срабатывания.

Независимый расцепитель осуществляет замыкание и размыкание контактов автоматического выключателя при выполнении операций включения и отключения аппарата вручную. Также данный расцепитель автоматически отключает защитный аппарат в случае воздействия на него двух других расцепителей, осуществляющих защиту от сверхтоков.

Тепловой расцепитель осуществляет защиту от превышения тока нагрузки, протекающего через автоматический выключатель, выше номинального значения. Основной конструктивный элемент данного расцепителя – это биметаллическая пластина, которая нагревается и деформируется в случае протекания через нее тока нагрузки.

Пластина, отклоняясь до определенного положения, осуществляет воздействие на механизм свободного расцепления, который обеспечивает автоматическое отключение выключателя. Причем время срабатывания теплового расцепителя зависит от тока нагрузки.

Каждый тип и класс автоматического выключателя имеет свою времятоковую характеристику, в которой прослеживается зависимость тока нагрузки от времени срабатывания теплового расцепителя данного автоматического выключателя.

При проверке теплового расцепителя берется несколько значений тока, фиксируется время, за которое произойдет автоматическое отключение автоматического выключателя. Полученные значения сверяют со значениями из времятоковой характеристики для данного аппарата. Следует учитывать, что на время срабатывания теплового расцепителя влияет температура окружающей среды.

В паспортных данных к автоматическому выключателю приводятся времятоковые характеристики для температуры 25 0С, при повышении температуры время срабатывания теплового расцепителя снижается, а при снижении температуры – увеличивается.

Электромагнитный расцепитель служит для защиты электрической цепи от токов короткого замыкания, токов, которые значительно превышают номинальный. Величину тока, при котором срабатывает данный расцепитель, показывает класс автоматического выключателя. Класс показывает кратность тока срабатывания электромагнитного расцепителя к номинальному току автомата.

Например, класс «C» показывает, что электромагнитный расцепитель сработает при превышении номинального тока в 5-10 раз. Если номинальный ток автоматического выключателя 25 А, то ток срабатывания его электромагнитного расцепителя будет в пределах 125-250 А. Данный расцепитель, в отличие от теплового, должен сработать мгновенно, за доли секунды.

Как проверить дифференциальный автомат на работоспособность

После замены электропроводки в помещении важно грамотно и надежно установить приборы учета и все необходимые автоматы для бесперебойной и корректной работы подключенного оборудования. После установки все электрические устройства нужно проверить на работоспособность – прогрузить.

  1. Кратко об автоматах защиты
  2. Методы прогрузки
  3. Необходимость эксплуатационной проверки
  4. Результаты проверки
  5. Сроки испытаний

Кратко об автоматах защиты

Автоматы защиты или автоматические выключатели – это электрические механизмы, основная задача которых при появлении нештатных или аварийных ситуаций обесточить проблемную линию или все помещение. Он отслеживает в режиме реального времени напряжение в электрической цепи.

Автоматические выключатели получили широкое распространение благодаря приемлемой цене, надежности и простоте использования, установки и обслуживания. Большое количество модификаций позволяет устанавливать устройство в электроустановки большой и малой мощности. Также выключатели бывают оснащены ручным и дистанционным управлением.

Методы прогрузки

При проведении прогрузки изменяются все основные характеристики устройства – время срабатывания защиты при появлении аварийных ситуаций, номинальный ток и ток срабатывания защиты. Проверка автоматических выключателей должна проводиться квалифицированным персоналом, после чего в удостоверении оставляют отметку с разрешением на дальнейшую эксплуатацию.

В удостоверении обязательно указывают группу по технике безопасности и напряжению, при котором сотрудники могут проводить проверку электрического оборудования. Подписывается бумага главным энергетиком предприятия.

Оборудование для проверки автоматов на отключающую способность

Чтобы проверить дифавтомат на работоспособность, предварительно требуется собрать простую схему, в состав которой входит следующее оборудование:

  • трансформатор тока – ТТ;
  • соединительные провода;
  • амперметр, выполняющий роль шунта;
  • ключ управления – КУ;
  • лабораторный автотрансформатор для наблюдения за изменениями нагрузки – ЛАТР или нагрузочный трансформатор – НТ.

Проверка дифавтомата требует частичного демонтажа устройства, а после проверки обратной установки.

Как проверить автоматический выключатель на работоспособность

Для полноценной проверки на пригодность требуется использовать специальное оборудование. Его прогрузка осуществляется для вычисления времени срабатывания в пределах защищаемых пределов по заводским характеристикам. На испытуемом устройстве выставляется параметр тока нагрузки, который равен максимальному амперажу для конкретной модели.

При проверке теплового расцепителя на автоматическом выключателе выставляется трехкратный ток нагрузки и максимальное время срабатывания. Как правило, этот временной интервал колеблется в пределах 5 секунд – 0,5 минуты.

Результаты проводимых испытаний обязательно должны быть занесены в специальный протокол. В нормативном документе должны быть отображены величины времени срабатывания электрического устройства и наводимый ампераж. Образец заполнения документа находится в интернете в свободном доступе.

Необходимость эксплуатационной проверки

В нормативных документах нет четких указаний о сроках и периодичности производимых проверок, поэтому частота полностью зависит от человека, который отвечает за полную техническую безопасность жилплощади.

Электрики, полагаясь на свой опыт, рекомендуют время от времени проверять электрическое оборудование на пригодность. Обусловлено это тем, что каждый прибор с течением времени и изнашивается и может работать некорректно или вовсе не выполнять поставленные перед ним задачи.

Задавая определенную периодичность, лучше руководствоваться рекомендациями изготовителя устройства. Как правило, оборудование европейского производства нет необходимости проверять слишком часто. Если же автоматический выключатель был изготовлен в Китае или на одном из отечественных заводов, проверки лучше проводить как можно чаще. В любом случае у владельца есть право выбора.

При разработке алгоритмов проверки используется нормативный документ — ГОСТ 50345-2010: Автоматические выключатели бытового назначения для защиты от сверхтоков.

Результаты проверки

Результаты проверки обязательно должны быть занесены в специальный протокол. Обязательно фиксируются сведения о срабатывании или, напротив, несрабатывании устройства, время и сила тока в момент срабатывания.

Устройство подлежит утилизации и замене новым автоматическим выключателем в следующих случаях:

  • оборудование срабатывает, но по истечении допустимого промежутка времени;
  • при токе срабатывания не происходит расцепления;
  • при токе несрабатывания фиксируется расцепление.

Строгое соблюдение регламента испытаний исключает вероятность дальнейшего использования неисправного оборудования. Дефектные автоматические выключатели вычисляются с высокой точностью.

Сроки испытаний

С какой частотой должны проводиться проверки, написано в сопроводительных нормативно-правовых документах, но рекомендуемая периодичность – один раз в три года при соблюдении всех правил эксплуатации. При некорректной работе или регулярных аварийных срабатываниях периодичность должна изменяться, проводится внеплановая проверка. Данная рекомендация относится ко всем бытовым автоматическим выключателям.

Часто из-за короткого замыкания наблюдается поломка других рабочих элементов электрической цепи, например, вентиляционной системы. Это приводит к большим финансовым растратам. Чтобы предотвратить подобные ситуации и в долгосрочной перспективе сэкономить, рекомендуется регулярно подвергать испытаниям автоматические выключатели и в случае выявления проблемы заменять их новыми. Чтобы убедиться, что автоматические выключатели выполняют свою защитную функцию, требуется на дисплее установить определенную периодичность, с которой будут проводиться испытания на пригодность.

Почему срабатывают автоматические выключатели

Основные неисправности автоматических выключателей, их причины возникновения и способы устранения. Что делать, если автомат не включается или выбивает.

Если в квартире погас свет, отключились розетки, или перестала работать электроплита, то любой мало-мальски знакомый с электротехникой человек идет на площадку проверять в электрощите состояние автоматических выключателей. Чаще всего, устранение неисправности сводится к повторному включению автомата.

Факт срабатывания современного модульного автоматического выключателя определяется легко: ручка находится в положении «вниз», на ней отчетливо виден круглый знак – «ноль». Для включения достаточно повернуть эту ручку вверх, тогда появится горизонтальная черта, и можно будет считать, что миссия выполнена.

Многие квартиры на постсоветском пространстве оборудованы щитками с автоматами немного другого образца. Автоматические выключатели серии АЕ и им подобные имеют немного большие габариты, крепятся к основанию длинными винтами и обладают неприятным свойством: при срабатывании их ручка остается в прежнем, верхнем положении. Это затрудняет поиск сработавшего автомата, который необходимо выключить и снова включить, чтобы вновь подать напряжение.

Но все это, по большому счету, мелочи. Сработавший автомат говорит о какой-то неисправности, а нам надо разобраться, о какой именно.

Расцепители автоматических выключателей

Для начала надо выяснить хотя бы в общих чертах, что такое автоматический выключатель, и как он работает. Многим известно, что автомат разрывает «фазу». Многополюсный автомат может разрывать и нулевой рабочий проводник. Но разрывать цепь автомат может не только по желанию владельца, поворачивающего ручку вниз. На то это и «автоматический» выключатель, что выключиться он может и автоматически.

Необходимо это для того, чтобы защитить проводники и квартирное электрооборудование от повышенного электрического тока, способного вызвать пожар и разрушения. Причиной же возрастания тока может стать:

1. Перегрузка сети. Ее может вызвать включение неисправных электроприемников, или электроприемников, суммарная мощность которых превышает возможности сети. Последнее может быть связано и с неправильной электрической разводкой по квартире, когда на одну группу приходится большое количество штепсельных розеток. Каждая розетка в отдельности вполне может быть и не перегружена, но суммарный их ток может достигать недопустимых для одного автомата значений.

Для защиты от токов перегрузки в автоматических выключателях применяется тепловой расцепитель – биметаллический контакт, состояние которого зависит от температуры, которая, в свою очередь, зависит от протекающего электрического тока. Уставку, то есть, ток срабатывания теплового расцепителя обычно можно регулировать в небольших пределах.

2. Короткое замыкание в сети. Оно может быть вызвано неисправностью электропроводки или выходом из строя какого-либо электроприемника. Для новой электропроводки короткое замыкание может стать результатом ошибки в монтаже, например, при соединении проводов в ответвительной коробке. Физически короткое замыкание – это электрическое соединение фазного и нулевого проводника помимо нагрузки. Поскольку сопротивление цепи в этом случае ограничивается только сопротивлением проводов, то электрический ток мгновенно достигает очень большого значения.

Для защиты от сверхтоков короткого замыкания тепловой расцепитель автомата неэффективен: пока нагреется и разорвется биметаллический контакт, провода уже практически наверняка будут повреждены, а электрическая дуга вызовет возгорание. Поэтому в модульных автоматических выключателях всегда применяетсяэлектромагнитный расцепитель, скорость срабатывания которого составляет доли секунды с момента возрастания тока.

Итак, если в вашем квартирном щитке сработал автоматический выключатель, то можно, конечно, включить его вновь. Однако систематическое срабатывание говорит о какой-то проблеме, которую придется решать.

Короткое замыкание в цепи розеток

При мгновенном срабатывании автомата после его включения есть все основания полагать, что мы имеем дело с коротким замыканием – тепловой расцепитель так быстро не сработает. Убедиться в наличии замыкания можно при помощи мультиметра – сопротивление между нулевой рабочей шиной N и выводом автоматического выключателя при коротком замыкании должно быть близко к нулю. Разумеется, проводить подобные измерения можно, только при выключенном автомате.

Читать еще:  Способ определения начал и концов обмоток трёхфазного асинхронного двигателя

Коль скоро мы убедились, что причина срабатывания – короткое замыкание, то необходимо выяснить, где именно оно произошло. Автоматические выключатели в щитке должны быть подобраны в соответствии с принципами селективности, а это значит, что сработать должен именно автомат, расположенный ближе всего к месту короткого замыкания. При этом выключатель реагирует только на замыкания в той части цепи, которая расположена после него относительно линии.

Поэтому, скажем, если срабатывает только вводной автоматический выключатель, то место замыкания с большой долей вероятности расположено прямо во вводном щите. При замыкании в пределах квартиры срабатывает групповой выключатель и зачастую вместе с ним – вводной автомат. В этом случае вводной аппарат можно смело включить вновь и выяснить, какая именно группа электроприемников подключена к проблемному проводу – эта группа не будет работать.

Выяснив этот вопрос, можно отключить все эти электроприемники и вновь ввести групповой автомат в работу. Если он не сработал, то причина состоит в неисправности одного из отключенных электроприборов. Найти конкретного виновника можно либо поочередным включением всех электроприемников, либо измерением их входного сопротивления. Второй способ не подходит для приборов, имеющих электронное управление. Неисправный прибор, разумеется, подлежит ремонту.

Если все приборы исправны, необходимо приступить к осмотру розеток, входящих в состав группы: пластиковые корпуса разобрать, проверить и подтянуть клеммные зажимы. После розеток наступает черед коробок. Их придется вскрыть. И если осмотр не выявит явных неисправностей, то провода надо разъединить, чтобы проверить сопротивление между жилами кабелей по отдельности. Такая проверка уже точно позволит определить, в каком именно из кабелей имеется замыкание. Поврежденная линия подлежит замене, а жилы в коробке необходимо вновь соединить с применением сертифицированных зажимов.

Короткое замыкание в цепи освещения

Если срабатывающий автоматический выключатель защищает цепи освещения, то проверку можно начать с введения автомата при выключенных выключателях. Не сработал автомат – можно поочередно щелкать выключателями для того, чтобы выяснить, в цепи какого именно из них имеется короткое замыкание. Таким образом сужаем область поиска до цепи группы светильников, вводимых с одного выключателя.

В этой группе следует тщательно осмотреть каждый светильник, выкрутив лампы и рассмотрев клеммные зажимы. Мультиметром можно измерить сопротивление между фазным и нулевым проводом со стороны каждого светильника. При этом можно определить светильник или кабельную линию, в которой произошло замыкание.

Если же короткое замыкание выявляется на всех светильниках группы, или присутствует в сети вне зависимости от положения выключателя, то местом замыкания, скорее всего, является ответвительная коробка освещения. Ее необходимо вскрыть и проверить точно так же, как в случае с замыканием розеточной сети. Ну, а если и в коробке полный порядок, то прозваниваем отдельные кабельные линии, разъединив их концы.

Перезагрузка

Перегрузка сети — Как уже говорилось, в случае перегрузки сети по току автоматическому выключателю требуется некоторое время для срабатывания. Обычно речь идет о нескольких минутах. Поэтому если автомат вышибает время от времени, то очень может быть, что вы имеете дело именно с перегрузкой.

Перегрузка цепи освещения — явление достаточно редкое, и чтобы его избежать, используйте только лампы, подходящие по мощности к вашим светильникам, а модернизацию цепи освещения производите с учетом резерва по мощности. Ведь цепи освещения отдельных квартир часто бывают защищены одним автоматом на десять ампер. Этого часто бывает и достаточно, но при установке большого количества дополнительных светильников в щитке необходимо предусмотреть дополнительный автомат освещения для их питания, особенно, если светильники галогеновые или с обычными лампами накаливания.

Перегрузка розеточной сети — это совсем не редкость. Во время проектирования и монтажа электропроводки в доме невозможно точно определить нагрузку на каждую группу. Поэтому для удобства жильцов на группу, включаемую одним автоматическим выключателем, приходится по три-четыре розетки. И, несмотря на то, что номинал автоматического выключателя обычно подбирается по сечению питающей жилы и не превышает 25 ампер, номинальный ток розеток может составлять 16 ампер.

Здесь есть все предпосылки для перегрузки, если все мощные электроприемники, такие как чайник, утюг, микроволновая печь и тому подобное, включить в розетки одной группы. Тут уж, разумеется, сработает автоматический выключатель. И чтобы подобного не происходило, необходимо равномерно распределять мощную нагрузку между группами, а при отсутствии такой возможности – не включать в сеть одновременно несколько мощных электроприемников.

Случается, что неисправный электроприбор потребляет повышенный ток, который приводит к перегрузке сети и срабатыванию автоматического выключателя. Замерить ток в бытовых условиях не всегда возможно, но если срабатывание теплового расцепителя происходит только при включении какого-то одного электроприемника, а номинальная мощность этого прибора не превышает 2,5 кВт, то следует произвести его ревизию на предмет наличия неисправностей.

Неисправность автоматического выключателя — не так уж и редко причиной постоянного срабатывания автоматических выключателей является неисправность последних. Даже среди новых автоматов допускается некоторое количество бракованных экземпляров. Их неспособность держать уставку (а касается это, в основном, тепловых расцепителей) часто выявляется только в ходе эксплуатации.

Поэтому при систематическом срабатывании теплового расцепителя автомата, прежде чем приступать к радикальным методам решения проблемы, можно просто произвести пробную замену автомата на схожий по номиналу и характеристике.

В заключение

В статье мы умышленно обошли стороной моменты, когда срабатывание автомата вызвано повреждением линии в ходе ремонтных работ – это тема отдельного разговора. По той же причине мы не стали касаться ситуации, когда срабатывает дифференциальный автоматический выключатель.

Но напоследок хотелось бы напомнить, что самый популярный способ решения проблемы срабатывающего автомата – замена его на автомат большего номинала – не допустим категорически. Автоматические выключатели – это аппараты, обеспечивающие защиту от пожара и повреждений. Их номинал подбирается именно с целью обеспечения безопасности. Произвольно выбранный автомат не выполнит своих функций и не защитит от опасных режимов работы электрической сети.

Особенности проверки выключателей первичным током

В настоящее время все более высокие требования предъявляются к качеству и бесперебойности передачи электроэнергии, которые в свою очередь зависят от надежности и качества электроэнергетического оборудования.

Основным коммутационным аппаратом в электрических установках, обеспечивающим выполнение операций включения и отключения отдельных цепей при ручном или автоматическом управлении, является выключатель. От его исправности зависит правильная и безопасная работа электроустановок, поэтому важно не только содержать выключатель в исправном состоянии, но и проводить его своевременную проверку.

Наиболее распространенным типом расцепителей в автоматических выключателях до недавнего времени был электромагнитный расцепитель, реагировавший на заданное среднеквадратическое значение тока (т.е. на площадь сигнала). Для проверки таких выключателей удобно было использовать прогрузочные устройства с тиристорными преобразователями. Принцип их работы носит название фазо-импульсного регулирования и заключается в создании искусственного КЗ с изначально неизвестной амплитудой тока, а затем в прекращении подачи тока в необходимые фазы для обеспечения заданной точности и площади сигнала. В результате автоматический выключатель прогружается током, форма которого представляет части синусоиды. На рис. 1 показаны две разных формы тока, которые дают одинаковое среднедействующее значение при измерении уровня сигнала. Поскольку для проверки выключателей с электромагнитными расцепителями важна не форма, а площадь сигнала, прогрузочные устройства с тиристорными преобразователями вполне справлялись с этой задачей.

Рис. 1. Синусоидальный сигнал и сигнал, полученный методом фазо-импульсного регулирования

В настоящее время широкое распространение получили выключатели с электронными и микропроцессорными расцепителями, анализирующими форму и скорость изменения тока. Осуществлять прогрузку таких выключателей тиристорными устройствами недопустимо. Результаты проверки будут неверными, поскольку сигналы с одинаковым скреднеквадратичным значением тока могут иметь разные формы и скорости изменения тока. Таким образом, при разработке современных испытательных установок необходимо учитывать особенности проверок современных автоматов.

Основными параметрами выключателя являются ток срабатывания, время срабатывания и время-токовая характеристика перегрузки.

Большинство современных низковольтных выключателей оборудованы быстродействующими и высокоточными электронными измерителями, воздействующими на контактную систему. Они не требует отдельного питания и гарантируют правильную работу защиты при токе нагрузки не менее 15% от номинального, даже при наличии тока только в одной фазе. Отдельно проверять данные измерители не представляется возможным, поскольку они располагаются внутри самого автомата, но в этом и нет необходимости, поскольку корректное срабатывание автоматического выключателя при подаче первичного тока будет свидетельствовать о работоспособности его контактной системы и измерительного блока.

При прогрузке выключателя первичным током сразу же встает вопрос, каким образом подавать ток: увеличивать его плавно или же подавать заданное значение тока скачком?

Очевидно, что испытательный ток необходимо подавать скачком (рис. 2, а), поскольку этот режим наиболее точно имитирует аварийную ситуацию, при которой ток в сети возрастает скачкообразно. При плавном увеличении тока (рис. 2, б), например, с использованием ЛАТРа, происходит интенсивный нагрев контактной системы, что может негативно сказаться на результатах проверки.

Рис. 2. Методы поиска тока срабатывания: а) увеличение тока скачком, б) плавное увеличение тока

В некоторых выключателях с электронными расцепителями питание схемы осуществляется непосредственно от тока, проходящего через полюса автоматического выключателя. В таких выключателях, чтобы запитать схему расцепителя, необходимо предварительно подать ток, близкий по значению к номинальному току выключателя, а затем уже подавать испытательный ток. Если проводить проверку без предварительной подачи тока, измеренное время срабатывания выключателя будет несколько завышенным (на величину времени запуска схемы расцепителя).

Следующий вопрос, требующий особого внимания: как получить наиболее точные результаты при измерении тока и времени срабатывания выключателя?

Электронные расцепители реагируют на действующее значение тока, это обусловлено тем, что на практике во время аварийных режимов в сети не всегда протекают синусоидальные токи, поэтому наиболее целесообразно оценивать величину тока по той работе, которую он совершает. Следовательно, испытательная установка также должна фиксировать и отображать действующее значение тока.

Опыт проверки быстродействующих выключателей, время срабатывания которых меньше 20 мс, показывает, что на интервале времени до одного периода расчетное значение действующего тока имеет достаточно большие расхождения со значением, рассчитанным для синусоиды с большим количеством периодов (рис. 3).

Рис. 3. Действующее значение тока и отклонение в первый период выдачи тока

Возникает вопрос: какую величину тока отображать, измеренную в момент отключения выключателя или же расчетную величину тока, который бы протекал, если бы автомат не отключился (фактически это величина уставки)? Наиболее удобным для пользователей было бы отображение обоих величин токов, однако расчет второго значения достаточно трудоемок, поскольку необходимо учитывать время протекания сигнала, скорость изменения тока и другие дополнительные параметры. В настоящее время испытательные установки фиксируют ток, измеренный в момент отключения выключателя. Измерение времени срабатывания выключателей можно проводить двумя способами: по пропаданию тока в цепи (по отсечке) и по изменению состояния контакта, подключенного к дискретному входу испытательной установки.

Измерение времени срабатывания по пропаданию тока рекомендуется применять при проверке тепловых расцепителей, у которых данное время превышает 5 с. Фиксация тока и времени срабатывания происходит по достижению тока определенного уровня Iпорог, определяемого перед каждой проверкой. Iпорог составляет 10% от предела измерения. Однако ток, в силу переходных процессов, не может мгновенно стать равным нулю (рис. 4), поэтому значение измеренного времени срабатывания по сравнению с реальным получается завышенным.

Рис. 4. Изменение тока при срабатывании выключателя

При проверке быстродействующих выключателей с мгновенными расцепителями время срабатывания рекомендуется определять по изменению состояния контакта. В этом случае может присутствовать разновременность срабатывания контактов испытательной установки и выключателя, однако погрешность измеренного времени срабатывания незначительна.

Читать еще:  Как правильно испытать автоматический выключатель

Всё вышеописанные особенности проверок выключателей были учтены при разработке испытательного комплекса РЕТОМ-30кА, предназначенного для проверки первичным током устройств РЗА, автоматических выключателей с электромагнитными, тепловыми, электронными расцепителями самого широкого диапазона с номинальными токами от 63 до 6 300 А, а также измерительных трансформаторов тока. Комплекс позволяет выдавать полноценный синусоидальный ток, начинающийся с нуля, что важно для проверки выключателей, работающих по действующему значению тока. В него встроен дополнительный источник питания, необходимый для запитывания схемы электронного расцепителя, а также имеется специальный режим «Предпитание» для предварительной подачи на расцепитель тока, близкого к номинальному.

Сегодня РЕТОМ-30кА является единственным в России комплексом, позволяющим выдавать синусоидальный ток до 30 000 А при большой величине выходной мощности, составляющей 55 000 ВА (а совместно с дополнительным блоком РЕТ-6кА – и постоянный ток до 6 000 А), при этом оставаясь достаточно мобильным и имеющим сравнительно небольшие габариты.

Как проверяются электролабораторией автоматы

Любая электрическая сеть является потенциальным источником двух факторов опасности: поражение электрическим током и вероятность пожара вследствие короткого замыкания. И если первый фактор присутствует только в сетях с напряжениями свыше 42 вольт, то опасность короткого замыкания сохраняется даже в низковольтной электропроводке. В связи с чем, проверка автоматических выключателей – обязательный пункт в смете как приёмосдаточных, так и планово-профилактических испытаний, выполняемых электролабораторией.

В отличие от дифференциального контроля токов утечки, эта категория защитной аппаратуры присутствовала в электросетях с момента их появления, поэтому технология их проверки достаточно строго стандартизирована.

Из каких этапов состоит проверка защитных автоматов

Согласно ГОСТ Р 50031-2012 полный цикл испытаний автоматических выключателей состоит из следующих этапов:

  • контроль стойкости маркировки;
  • проверка надёжности винтовых соединений;
  • тестирование выводов для внешней коммутации;
  • контроль электрической безопасности прибора (защита от поражения электротоком);
  • проверка электрического сопротивления диэлектриков, задействованных в конструкции прибора;
  • тест на соответствие температурным нормам;
  • проверка работоспособности в ходе длительного приложения нагрузки (28 суточный испытательный цикл);
  • измерение характеристик отключения при рабочем срабатывании прибора;
  • проверка коммутационной способности прибора;
  • устойчивость по токукороткого замыкания;
  • контроль сопротивляемости механическим ударам;
  • тестирование работоспособности в условиях повышенной температуры внешней среды;
  • проверка соответствия нормативам пожарной устойчивости (то есть, время сохранения коммутационных характеристик в условиях пожара или критической тепловой нагрузки);
  • тестирование устойчивости диэлектрика к образованию токопроводящих каналов (трекингостойкость);
  • проверка коррозионной устойчивости конструкционных элементов прибора при работе в нормальной или агрессивной среде (коррозиестойкость).

Приведенный перечень испытаний разработан, прежде всего, для первичной сертификации новых изделий и в полном объёме выполняется только после разработки нового прибора (цена такого «исследования» гораздо выше обычных лабораторных проверок).

Эксплуатационные испытания в электроустановках, проводимые ЭТЛ, разрабатываются на основе трёх базовых этапов:

  • проверка характеристик отключения;
  • контроль коммутационной способности;
  • испытание на устойчивость к токам короткого замыкания.

Измерение характеристик отключения

Целью данного этапа проверки является определение фактических рабочих уставок прибора и их соответствие время токовым характеристикам, оговоренным в заводской документации прибора.

Тестируемыми характеристиками в данном случае являются:

  • номинальный рабочий ток;
  • время отключения;
  • ток и время мгновенного действия (проверка электромагнитного расцепителя);

Согласно стандарту, этот этап тестирования также должен сопровождаться проверкой стабильности параметров защиты при изменении температуры окружающей среды. Но в эксплуатационную технологию испытаний электроустановок до 1000 в данный пункт, как правило, включает только при наличии соответствующих производственных условий.

Контроль коммутационной способности

Чтобы подтвердить работоспособность автоматического выключателя необходимо не только проверить его детекторы перегрузок, но и выполнить тест на отключающую способность под штатной и критической нагрузкой.

Данный тест заключается в многократном выполнении цикла «включение-отключение» с последующей проверкой переходного сопротивления контактов.

Устойчивость к токам короткого замыкания

Поскольку номинальный рабочий ток автоматического выключателя значительно меньше тока короткого замыкания, данный этап электроизмерительных испытаний предназначен для подтверждения работоспособности прибора после пропускания через его полюса токов короткого замыкания.

Испытание считается успешным, если коммутационный механизм сохранил свою работоспособность, и переходное сопротивление контактов осталось в пределах нормы.

Когда необходима проверка

Согласно требованиям ПУЭ и ПТЭЭП, контроль исправности защитных автоматов производится во всех случаях официальных электроизмерительных испытаний.

То есть, такая необходимость возникает:

  • при сертификации изделия после его разработки;
  • при вводе электроустановки в эксплуатацию (приёмосдаточные испытания);
  • в ходе планово-профилактических проверок электросети;
  • после капитальных, плановых или аварийных ремонтов.

В ходе испытаний производится прогрузка выключателя мощными импульсами тока и фиксируются временные показатели процесса срабатывания. Поскольку в данном случае граница между «годен» и «не годен» лежит в пределах нескольких миллисекунд, ни о каких самостоятельных выводах о работоспособности прибора и речи быть не может.

Любой вариант самостоятельных проверок (включая срабатывание по кнопке «тест» в тех устройствах, где она есть) подтвердит лишь факт исправности механической системы, но никак не правильность регулировок прибора.

Официальное экспертное заключение о соответствии характеристик автоматического расцепителя нормам и требованиям, озвученным в соответствующих стандартах, может дать лишь сертифицированная электроизмерительная лаборатория.

Какие нормативные документы используются при разработке алгоритмов проверки

  1. Основные термины и определения, а также базовые нормативные диапазоны, используемые для описания характеристик расцепляющих автоматов, приведены в стандарте ГОСТ 50031-2012.
  2. Конкретные алгоритмы проверок и рекомендуемые схемы стендовых испытаний приведены в ГОСТ Р 50345-2010 (а также в 8 разделе ГОСТ Р 50030.2-99).
  3. Измерение сопротивления изоляции производится согласно ПУЭ (п.1.8.37.3) и ПТЭЭП (Приложение 3.1, таблица 37).
  4. Организация условий измерений проводится в соответствии с приведенными выше стандартами и с учётом положений отраслевых СНИП.

Несмотря на достаточно чёткую нормативную проработку алгоритмов ревизии и наладки аппаратуры для защиты от сверхтоков, для каждого конкретного случая разрабатывается свой вариант технологической инструкции, ориентированный, как правило, на конкретный тип расцепителей и имеющееся в наличии измерительное оборудование.

Электротехническая лаборатория «Мега.ру» оказывает услуги по организации и проведению всех видов испытаний в электроустановках, включая всестороннюю проверку автоматических выключателей. Уточнить расценки и сделать заказ на выезд специалистов можно по телефонам, опубликованным на странице «Контакты».

Проверка автоматических выключателей

Автоматические выключатели (автоматы) обеспечивают безопасность и надежность работы электроустановок и электрических сетей напряжением до 1000В. Они защищают электросистемы от токов коротких замыканий и перегрузок, мгновенно размыкая электрическую цепь при возникновении аварийной ситуации.

Исправность автоматов напрямую влияет на электро- и пожаробезопасность объекта. Чтобы подтвердить корректность их работы, необходимо проводить регулярные проверки функционирования защитных устройств. Виды испытаний и периодичность их проведения определяются ПУЭ и отраслевыми стандартами.

По результатам испытаний делается вывод, может ли проверяемый автомат:

  • предотвратить электротравмы людей при коротком замыкании;
  • защитить электросистему от возгораний и перегрузок в случае дефектов изоляции или технических неисправностей оборудования.

Когда надо проводить проверку автоматических выключателей

Испытания работы автоматических выключателей проводят:

  • после монтажа электроустановки перед вводом в эксплуатацию;
  • после модернизации, завершения текущего или капитального ремонта;
  • в плановом порядке с периодичностью, установленной ПУЭ;
  • внепланово (по требованиям контролирующих органов, арендодателя, страховой компании и других организаций).

Регулярные испытания автоматических выключателей на соответствие номинальным параметрам дает гарантии безопасного использования электроустановки, минимизирует ложные срабатывания и отказы в работе. Действия по проверке автоматов должны проводиться профессионалами, которые имеют необходимое оборудование, допуски и сертификаты.

Проверка работы автоматического выключателя состоит из серии испытаний, во время которых проверяется соответствие текущих и нормативных параметров устройства. Основная часть проверок направлена на контроль работы расцепителей, поскольку именно они являются ключевым функциональным элементом любого автомата.

Как осуществляется проверка работы расцепителей

Любой автоматический выключатель представляет собой электронное или механическое коммутационное устройство, оснащенное тепловым и магнитным расцепителями. С их помощью осуществляется размыкание контактов аппарата при возникновении сверхтока в главной электроцепи.

Тепловой расцепитель срабатывает при возникновении токов перегрузки, он представляет собой биметаллическую пластинку. Когда через пластину проходит электроток, превышающий номинальный показатель, то она нагревается, изгибается и прикасается к отключающему элементу автоматического выключателя. Время срабатывания расцепляющего элемента теплового типа зависит от величины электротока перегрузки.

Электромагнитный расцепитель представляет собой соленоид с сердечником, он осуществляет обесточивание электроцепи при возникновении тока короткого замыкания. Расцепляюший элемент электромагнитного типа срабатывает мгновенно – под воздействием сверхтока короткого замыкания сердечник втягивается внутрь катушки и заставляет сработать отключающий элемент автомата. Некоторые производители автоматических выключателей объединяют электромагнитный и тепловой расцепляющие элементы в одно устройство – термомагнитный расцепитель.

Автомат может дополнительно оснащаться так называемым «нулевым» расцепителем. Он предназначен для отключения участка электроцепи в случае падения электронапряжения в сети ниже минимального установленного значения.

В сетях переменного тока может использоваться автоматический выключатель с электронным расцепителем, который соединяется с измерительными трансформаторами тока. В состав такого устройства входит микропроцессор, который отвечает за обработку сигналов от трансформаторов. Если полученный сигнал превышает пороговую величину, то электронный расцепитель воздействует на отключающий элемент автомата.

Проверка работы расцепителей автоматического выключателя состоит в последовательных испытаниях (прогрузке) каждого из его расцепляющих элементов с различным испытательным током. Прогрузка проводится с использованием специализированного оборудования по утвержденным методикам. Прибор замеряет прохождение токов разной силы через расцепляющий автомат до момента его полного срабатывания.

Методы контроля срабатывания автоматических выключателей

В ходе испытаний автоматических выключателей осуществляются следующие действия:

  • контроль соответствия пороговых значений срабатывания для короткого замыкания и перегрузки;
  • измерения сопротивления изоляции;
  • проверки срабатывания напряжением выше номинала;
  • оценка временных параметров срабатывания.

Процедура проверки расцепляющих автоматов утверждена в отраслевых стандартах и инструкциях соответствующего завода-изготовителя. Она зависит от типа и характеристик автоматического выключателя, параметров электросистемы.

Для проведения испытаний к вводам расцепляющего автомата подключают специализированный прибор. Он подает ток на входы автомата и засекает время срабатывания расцепителя. Процедура включает такие действия:

  • Вначале на «холодный» автомат подают ток величиной в 1.13 раз больше номинала. Тепловой расцепитель не должен размыкать электроцепь минимум 60 минут для электротока до 63 А и минимум 120 минут для номинального электротока более 63 ампер.
  • Далее на устройство подают ток в 1.45 раза превышающий номинал. Автомат должен отключить электрическую цепь в течение 60 или 120 минут при номинале менее 63 А или более 63 А соответственно.
  • После этого автомат возвращают в неразогретое состояние и подают электроток величиной в 2.55 раз выше номинала. Тепловой расцепитель должен сработать в течение одной минуты при номинале до 32 А, в течение двух минут для номинала выше 32 А.

Действия по тестированию электромагнитных расцепителей:

  • На неразогретый прибор подается ток величиной 3, 5 или 10 ампер в зависимости от его временных и токовых характеристик. Время срабатывания должно составить от 0.1 секунды.
  • Перед проведением второго этапа расцепляющий автомат возвращают в «холодное» состояние. Далее с помощью испытательной установки подают ток 5, 10 или 20 ампер и засекают время отключения электроцепи. Оно должно составить менее 0.1 секунды.

На крупных офисных, коммерческих и производственных объектах могут быть установлены сотни расцепляющих автоматов. Проверка каждого из них займет много времени и вызовет значительные финансовые затраты. В соответствии с ПУЭ испытывать необходимо не все, а лишь определенное количество автоматов.

В частности, подлежат проверке:

  • как минимум 2% от распределительных и групповых автоматов;
  • выключатели пожарной сигнализации, установок пожаротушения;
  • автоматы основного и резервных вводов, системы аварийного освещения.

Если объект еще не введен в эксплуатацию, то наиболее удобный метод – проверка автоматов в стационарной электролаборатории. В противном случае работы проводятся непосредственно по месту установки устройств. Чтобы не нарушать рабочий процесс замеры могут проводиться в нерабочее время, выходные и праздничные дни.

Читать еще:  Как рассчитать автоматический выключатель

Приборы для проверки работы выключателей

Профессиональные испытательные установки проводят все проверки в автоматическом режиме, специалист должен только выставить нужную величину тока в амперах. Это обеспечивает удобство, оперативность и безопасность проведения испытаний.

Результаты измерений фиксируются в протоколе установленной формы. На основании полученных данных специалист выдаст заключение о пригодности устройств к эксплуатации или необходимости замены.

Расцепляющий автомат подлежит замене на аналогичное устройство в следующих случаях:

  • устройство срабатывает при токах, величина которых меньше порогового значения;
  • автомат не отключает электрическую цепь при токах выше пороговой величины;
  • временные параметры срабатывания не укладываются в допустимый диапазон.

Если в ходе испытательных измерений был выявлен хотя бы один дефектный выключатель, то необходимо проверить еще столько же устройств, сколько было передано на первую проверку. Данное требование установлено отраслевыми стандартами.

Как разрабатываются алгоритмы проверки расцепителей

В отраслевых ГОСТ приведены:

  • базовые нормативы, которым должны соответствовать расцепляющие автоматы;
  • требования к организации условий проведения измерений;
  • рекомендуемые схемы проверок автоматических выключателей.

Технологические карты испытательных измерений разрабатываются под конкретные типы расцепителей и используемые измерительные приборы. Это позволяет учесть все нюансы электросистемы и гарантировать точность и объективность результатов.

Электролаборатория «ТеплоЭлектроСервис» проводит проверку автоматических выключателей с тепловыми, электромагнитными, термомагнитными, электронными расцепителями. Обратившись к нам, вы сможете максимально обезопасить электросистему вашего объекта и обеспечить стабильность ее работы, защитить людей и оборудование.

Наша электролаборатория предоставляет услуги в строгом соответствии с требованиями российского законодательства. Мы гарантируем высокую точность проводимых испытаний и предоставим официальный протокол по результатам проверки в сжатые сроки.

Обращаясь в нашу электролабораторию, вы гарантированно получаете услуги высокого качества:

  • полный пакет разрешений, лицензий и сертификатов на проведение испытаний и электроизмерений;
  • команда квалифицированных специалистов, имеющих многолетний опыт работы;
  • современное измерительное оборудование высокой точности, зарегистрированное в Ростехнадзоре;
  • выезд мобильной электролаборатории в удобное время;
  • доступные расценки и гибкие скидки в зависимости от объемов работы.

Цена испытаний просчитывается индивидуально для конкретного объекта. Стоимость зависит от типа и количества устройств, работоспособность которых необходимо проверить. Окончательная сумма просчитывается инженером компании после осмотра объекта (выезд специалиста – бесплатный).

Услуги предоставляются на основании официально заключенного договора. В нем прописывается перечень работ, расчет сметы, условия оплаты, права и обязанности каждой из сторон.

Регулярные проверки расцепляющих автоматов и замену дефектных устройств можно в долгосрочной перспективе рассматривать как экономию. Неисправные защитные устройства рано или поздно станут причиной аварийной ситуации, которая может повлечь значительный материальный ущерб.

Чтобы получить выгодное коммерческое предложение на проверку автоматических выключателей, отправьте онлайн заявку или свяжитесь с нами по телефону.

Испытание и проверка работы автоматических выключателей

Включением и выключением при снятой крышке проверяют работу автоматического выключателя. Включение и отключение должно быть мгновенным и не зависеть от скорости движения рукоятки (серии А3100, А3700, АК63, АК50) или кнопок (серия АП50). При выключении контакты должны расходиться на полную величину раствора.
Мегомметром на 500 В измеряют сопротивление изоляции автоматического выключателя между верхними и нижними зажимами каждого полюса в отключенном положении, между полюсами во включенном положении, а также между выводами катушки и магнитной системой расцепителя нулевого напряжения или дистанционного расцепителя. Сопротивление изоляции должно быть не менее 10 МОм при температуре 20°С.
Измерив сопротивление изоляции, проверяют работу элементов тепловых расцепителей. Для этого каждый полюс автоматического выключателя поочередно подключают к устройству для нагрузки выключателей током (например к стенду МИИСП) и устанавливают ток нагрузки, равный номинальному току расцепителя. При этом автоматический выключатель не должен срабатывать. Затем у автоматических выключателей серии А3100 проверяют время срабатывания тепловых расцепителей при нагрузке всех полюсов испытательным током, величина которого указана в табл. 1. Время срабатывания расцепителей должно соответствовать данным таблицы 1.
Работу тепловых расцепителей автоматических выключателей серии АП50 проверяют при нагрузке испытательным током, величина которого равна двойному номинальному току. При температуре 25°С время срабатывания тепловых расцепителей должно находиться в пределах 35—100 с.
Если при проверке тепловых расцепителей время срабатывания не соответствует данным таблицы 1 (серия A3100) или находится за пределами 35—100 с (серия АП50), тепловые расцепители заменяют.
Элементы электромагнитных расцепителей проверяют так. При помощи регулировочного устройства у автоматических выключателей серии А3100 устанавливают величину тока, проходящего через полюсы, на 30% ниже номинального значения тока уставки электромагнитного расцепителя. Затем плавно увеличивают испытательный ток до величины, при котором сработает расцепитель. Ток срабатывания для автоматических выключателей A3100 не должен превышать ток уставки электромагнитного расцепителя более чем на 30%, а для выключателей А3110, А3130, A3140 — более чем на 15%.
При поверке электромагнитных расцепителей автоматических выключателей серии АП50 вначале устанавливают величину испытательного тока на 15% меньше тока уставки, приведенного в таблице 2. При этом выключатель не должен отключаться. Плавно увеличивают ток до отключения выключателя. Величина тока срабатывания не должна превышать значение тока мгновенного срабатывания электромагнитного расцепителя, указанного в табл. 2, более чем на 15%.
При проверке электромагнитных расцепителей автоматических выключателей с тепловыми и электромагнитными элементами может оказаться, что тепловой элемент отключит выключатель раньше, чем сработает электромагнитный расцепитель. Чтобы убедиться в том, что отключение произошло от действия электромагнитного элемента, сразу же после отключения включают выключатель. Нормальное включение выключателя свидетельствует о том, что он был выключен электромагнитным элементом. При срабатывании теплового элемента повторного включения выключателя не произойдет до остывания нагревательного элемента.
Дистанционный расцепитель автоматических выключателей серии A3100 проверяют путем подачи напряжения на катушку расцепителя, вначале равного 75%, а потом 110% от номинального. При этих значениях напряжения дистанционный расцепитель не должен срабатывать и выключать выключатель.
У автоматических выключателей, имеющих расцепитель нулевого напряжения, проверяют действие этого расцепителя. Для проверки катушку расцепителя нулевого напряжения выключателей включают на напряжение, равное 85% от номинального, и вручную включают выключатель. Расцепитель не должен препятствовать включению выключателя. Затем отключают напряжение. При этом должно произойти мгновенное отключение выключателя.
Для проверки расцепителей минимального напряжения выключателей серии АП50 на зажимы катушки расцепителя подают напряжение, равное 80% от номинального, и включают выключатель. Выключатель должен четко включаться. Затем, плавно снижая напряжение на катушке, измеряют напряжение срабатывания расцепителя, которое должно составлять не менее 50% от номинального.

Таблица 1. Данные для проверки работы тепловых элементов при одновременной нагрузке всех полюсов автоматических выключателей двухкратным (A3110) и трехкратным
током (А3120, А3130, А3140)

Номинальная сила тока расцепителя, А

Испытательный ток (А) при температуре окружающего воздуха, °С

Время срабатывания при одновременной нагрузке всех полюсов испытательным током, с

Максимальное время, больше которого нельзя держать автомат под испытательным током, с

Температура биметалла при срабатывании автомата, °С

Прогрузка автоматических выключателей

Сегодня очень важную роль при электромонтаже оборудования занимает проверка работоспособности всех устройств по защите от тока короткого замыкания на землю или перегрузок сети. Это в первую очередь связано с тем, что большинство электрооборудования выпускается разными производителями, с разными требованиями к качеству и для этого проводится прогрузка автоматических выключателей с целью проверки на соответствие номинальным параметрам дает гарантию безопасной работы.

Устройство для прогрузки автоматов различных типов позволяет применять их для проверки вольтамперных характеристик автоматических выключателей специалистами электролаборатории. Так, в соответствии с руководством ПУЭ п. 3.1.8 защита электрических сетей от коротких замыканий (КЗ) обеспечивает требования селективности и минимальное время отключения. В требованиях ПУЭ п. 1.7.79 и п. 7.3.139 представлены значения отношений минимального расчетного тока КЗ к Iноминальному току плавкой вставки или расцепителя, которые обеспечивают надежное отключение поврежденной электрической сети.

В системе TN максимальное время автоматического защитного отключения не должно быть больше 2 и 4 десятых секунд соответственно для 380 и 220В (ПЭУ п. 1.7.79 табл. 1.7.1).

Для автоматического отключения сети в электроустановках до 1000 Вольт с глухозаземлённой нейтралью, проводимость защитных нулевых проводников выбирается с учетом максимального короткого замыкания и должна быть такой, чтобы при возникновении аварийной ситуации возникал ток превышающий в 4 раза Iноминального плавкой вставки и в 6 раз I расцепителя автоматического выключателя с обратнозависимой характеристикой (ПЭУ п. 7.3.139).

Автоматические выключатели с электромагнитным расцепителем (без временной выдержки), при защите сетей, используют кратность тока КЗ согласно требований ПЭУ п.1.7.79.

Для вновь смонтированных электроустановок или после их реконструкции используется методика прогрузки автоматов и испытаний на основании ПУЭ 1.8.37 п.п. 3.1, 3.2. Так, у выключателей с Iноминальным 400 Ампер и выше, проводится проверка сопротивления изоляции, которое должно быть не меньше 1Мом (ПУЭ 1.8.37 п. 3.1). Кроме того, проводится проверка действия расцепителя с мгновенным действием (электромагнитным расцепителем), и должно обеспечивать срабатывание выключателя при токе не более 1,1 номинального тока отключения, рекомендуемого заводом-изготовителем (ПЭУ 1.8.37 п. 3.2).

Объёмы испытаний автоматических выключателей

Если электроустановка смонтирована в соответствии с главами 7.1 и 7.2 раздела 6 ПУЭ, тогда проверяют все секционные и вводные выключатели, автоматы цепей автоматического пожаротушения и пожарной сигнализации, автоматы аварийного освещения, а так же не менее 2% выключателей групповых и распределительных сетей. В других электроустановках проверка аналогичная, но не менее 1% выключателей. В случае обнаружения автоматических выключателей (АВ) с не соответствием характеристик требованиям завода изготовителя, проводится проверка всех автоматов.

Для электроустановок находящихся в эксплуатации, периодичность прогрузки автоматов осуществляется каждые три года. Проверка действий расцепителей автоматов проводится согласно ПТЭЭП приложения 3 табл. 28 п. 28.6.

Методика прогрузки автоматических выключателей и определение различных видов испытаний, в заводских условиях, представлены в ГОСТ Р50030.2-99 по автоматическим выключателям и низковольтной аппаратуре управления и распределения.

Так, для проверки характеристик выключателей, проводят типовые, контрольные или выборочные испытания (п. 8.1.1). Изготовитель проводит типовые испытания, которые включают: превышение температуры, характеристики и пределы расцепления, электроизоляционные свойства, работоспособность при эксплуатации, перегрузках и со встроенными плавкими предохранителями, максимальную отключающую способность, выдерживаемый кратковременный ток. Контрольные и выборочные испытания включают: механическое срабатывание, выдерживаемый кратковременный ток и электрическую прочность изоляции.

Изготовитель автоматического выключателя, в соответствии с требованиями ГОСТ Р50345-99 (п. 6.1) по защите автоматических выключателей от сверхтоков различного назначения, наносит маркировку, которая необходима для сверки и подготовки протокола прогрузки автоматических выключателей. При этом указываются: наименование (товарный знак); тип и № каталога (серии); Uноминальное; тип мгновенного расцепления (B, C, D) и Iноминальный (например, В16); отключающая номинальная способность (в амперах); коммутационная схема; степень защиты (если не IP20). Вольтамперная характеристика представляется по запросу. Если выключатель использует не нажимные кнопки, то разомкнутое положение обозначается – О, а замкнутое — | или красным цветом, который не используют для других кнопок. При одной кнопке, для замыкания контактов, ее вдавливают или обозначают дополнительным указателем. Входные выводы обозначают направленными к выключателю стрелками, а выходные – стрелками от выключателя. Выводы для нейтрали обозначают – N. По ГОСТ 25874, выводы для защитного проводника указывают символом 1.

Силами нашей электролаборатории проводится прогрузка автоматов специальным устройством — прибором для прогрузки автоматов УПТР-1МЦ. Данный прибор предназначен для определения характеристик тепловых, электронных и электромагнитных расцепителей выключателей постоянного и переменного тока со значением до 350 Ампер и Iвых.= 0-5000Ампер, а также для замера времени его срабатывания.

После проведения работ, все результаты испытаний заносятся в протокол прогрузки автоматов, в котором требуется иметь данные об испытании, как минимум, 10% автоматов от их общего количества.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector