Как работает частотный преобразователь для электродвигателя
Предназначение частотника для трехфазного электродвигателя, разбираемся вместе
- 2 commentsПрименение 26 апреля, 2019
Создание трёхфазного асинхронного электродвигателя пришлось на конец XIX века. С тех пор, никакие промышленные работы не являются возможными без его использования. Наиболее значимый момент в рабочем процессе – плавный пуск и торможение двигателя. Это требование в полной мере выполняется при помощи частотного преобразователя.
Существует несколько вариантов названий частотника для трёхфазного электродвигателя. В том числе, он может называться:
- Инвертором;
- Преобразователем частоты переменного тока;
- Частотным преобразователем;
- Частотно регулируемым приводом.
С помощью инвертора осуществляется регуляция вращательной скорости асинхронного электродвигателя, предназначенного для преобразования электрической энергии в механическую. Осуществляемое при этом движение можно трансформировать в движение другого типа.
Специально разработанная схема частотного преобразователя позволяет доводить КПД двигателя до уровня в 98%.
Наиболее значимо использование преобразователя в конструкции электрического двигателя большой мощности. Частотник позволяет осуществлять изменения пусковых токов и задавать для них требуемую величину.
Принцип работы частотного преобразователя
Использование ручного управления пускового тока чревато излишними энергозатратами и уменьшением срока эксплуатации электрического двигателя. При отсутствии преобразователя также наблюдается превышение номинального значения напряжения в несколько раз. Из-за работы в таком режиме, также наблюдается негативное влияние.
Кроме того, частотный преобразователь обеспечивает плавность управления функционированием двигателя, ориентируясь на балансировку значений напряжения и частоты, и снижает энергопотребление вдвое.
Весь приведённый перечень положительных моментов возможен благодаря принципу двойного преобразования напряжения. Действует он следующим образом:
- Сетевое напряжение регулируется через выпрямление и фильтрование в звене прямого тока.
- Выполнение электронного управления, которое формирует определённую частоту, в соответствии с предварительно обозначенным режимом, и трёхфазное напряжение.
- Происходит продуцирование прямоугольных импульсов с последующей корректировкой амплитуды при помощи обмотки статора.
Как правильно подобрать преобразователь частот
Наиболее значимо при покупке частотника – не жалеть денег. В случае с преобразователем, дешёвый всегда означает малофункциональный, а это делает покупку бесполезной.
Также следует обратить внимание на тип управления преобразователя:
Высокоточная установка величины тока.
Рабочий режим ограничен заданным выходным соотношением частоты и напряжения. Данный тип управления уместен только для бытовых приборов простейшего типа.
Далее следует обратить внимание на мощность преобразователя частоты. Тут всё просто: чем больше, тем лучше.
Питающая сеть должна обеспечивать достаточно широкий диапазон напряжений. Это снижает риск поломки при резких скачках. Чрезмерно высокое напряжение может спровоцировать взрыв конденсаторов.
Показатели частоты должны удовлетворять производственным потребностям. Их нижний порог определяет широту возможностей для управления приводной скорости. Максимальный частотный диапазон возможен только при векторном управлении.
Число входящих/выходящих управляющих разъёмов должно быть немного больше минимально необходимого. Но это, конечно, отражается на повышении цены и возникновении затруднений при установке устройства.
Наконец, требуется обратить внимание на совпадение характеристик управляющей шины и параметров частотника. Это определяется по соответствию числа разъёмов.
Важно отметить способность переносить перегрузки. Запас мощности преобразователя частоты должен на 15% превосходить мощность двигателя.
Комплектация регулируемого привода
Частотный преобразователь формируется из трёх компонентов:
- Управляемый, либо неуправляемый выпрямитель, отвечающий за формирование напряжения ПТ (постоянного тока), поступающего от питания.
- Фильтр (в виде конденсатора), осуществляющий дополнительное сглаживание напряжения.
- Инвертор, моделирующий напряжение нужной частоты.
Самостоятельное подключение преобразователя
Перед тем, как приступать к подключению устройства следует воспользоваться обесточивающим автоматом, он обеспечит отключение всей системы в случае короткого замыкания на любой из фаз.
Схема актуальна, если требуется управлять однофазным приводом. Уровень мощности преобразователя в схеме при этом составляет до трёх киловатт, а мощность не теряется.
Способ, подходящий для подключения клемм трёхфазных частотников, питаемых промышленными трёхфазными сетями.
На рисунке схема подключения частотника 8400 Vector
Для ограничения пускового тока и снижения пускового момента при запуске электрического двигателя по мощности превосходящего 5 кВт, применяется переключение “звезда-треугольник”.
Когда на статор пускается напряжение, то фигурирует подключение устройства по типу “звезда”. Как только значение скорости двигателя начинает соответствовать номинальному, поступление питания осуществляется по схеме “треугольник”. Но этот приём используется, только когда технические возможности позволяют подключаться по двум схемам.
В объединённой схеме “звезды” и “треугольника” наблюдаются резкие скачки токов. При переходе на второй тип подключения показания по вращательной скорости значительно уменьшаются. Для восстановления прежнего режима работы и частоты оборотов следует осуществить увеличение силы тока.
Наиболее активно применяются частотники в конструкции электрического двигателя с уровнем мощности 0,4 – 7,5 кВт.
Сборка преобразователя частот своими руками
Одновременно с промышленным производством частотных преобразователей, остаётся актуальной сборка подобного устройства своими руками. Особенно этому способствует относительная простота процесса. В результате работы инвертора производится преобразование одной фазы в три.
Применение в бытовых условиях электрических двигателей, имеющих в комплектации подобное устройство, не вызывает никаких дополнительных затруднений. Поэтому можно смело браться за дело.
На рисунке структурная схема частотных преобразователей со звеном постоянного тока.
Схемы частотного преобразователя, используемые при сборке, состоят из выпрямительного блока, фильтрующих элементов (отвечающих за отсечение переменной составляющей тока и конструируемых из IGBT-транзисторов). По стоимости покупка отдельных компонентов преобразователя и выполнение сборки своими руками обходится дешевле, чем приобретение готового устройства.
Применять самосборные частотные преобразователи можно в электродвигателях имеющих мощность 0,1 – 0,75 кВт.
В то же время, современные заводские частотники имеют расширенную функциональность, усовершенствованные алгоритмы и улучшенный контроль безопасности рабочего процесса ввиду того, что при их производстве используются микроконтроллеры.
Сферы применения преобразователей:
- Машиностроение;
- Текстильная промышленность;
- Топливно-энергетические комплексы;
- Скважинные и канализационные насосы;
- Автоматизация управления технологическим процессом.
Стоимость электродвигателей находится в прямой зависимости от того, есть ли в его комплектации преобразователей.
Для чего нужны частотники?
- 0 commentsПринцип работы 11 декабря, 2016
Частотник служит для изменения характеристик энергии, поступающей от электросети к производственному оборудованию. Речь идёт о требуемом выборе частоты тока, вида напряжения. Технические возможности изменения этих понятий лежат в определённом диапазоне. Их показатели могут отличаться и быть выше данных, получаемых от первичного энергоисточника, так и гораздо ниже его.
Состав, конструкция схема
Оборудование преобразования частоты (ПЧ) компонуют из двух секций. Первая — с управляющими функциями, состоит из микропроцессоров. Их задача: регулировать коммутацию ключей, контролировать работу, выполнять диагностику и защиту. Вторая — силовая секция. Её комплектуют на транзисторах (тиристорах), выполняющих функцию переключателей.
Характеристика
Большинство распространённых электрорегулируемых приводов используют преобразователей частоты ПЧ двух классов. Основными признаками их разделения являются структурное отличие и принцип работы силовой части устройства. Свои функции ПЧ выполняет с промежуточным узлом, действующим с постоянным током, или осуществляется прямая связь с источником.
Положительной особенностью является высокая эффективность. Отдача достигает 98,5% и более. Используется для управления мощными высоковольтными приводами. Частотник значится относительно дешёвым, несмотря на дополнительную комплектацию схем регулирования. Эффективный способ его применения оценивают, рассматривая класс, преимущества или недостатки. Сначала использовались преобразователи с прямым, непосредственным подсоединением к сети. (рисунок 1).
То есть, источник питания подключается к статорным обмоткам двигателя через открытые вентили. Конструкция силовой части состояла из выпрямителей, выполненных на полупроводниковых приборах — тиристорах.
Обладающих свойствами электровентиля. И системы управления (СУ). Которая, попеременно их открывая, подключала к сети обмотки электродвигателя. Напряжение поступает на тиристоры, имея трёхфазный вид синусоиды Ua, Uв, Uс. На выходе преобразователя сформировано напряжение U вых.
Это показано на одной фазе с вырезанной полосой (рисунок 1). Увеличенный, он имеет зазубренный вид, который аппроксимирует линия синего цвета. Выходная частота устройства значится в границах 0—30 Гц.
Этот короткий диапазон лимитирует возможность привода регулировать скорость асинхронного электродвигателя. Такое подключение на практике даёт результат один к десяти. Хотя технологические процессы диктуют значительного увеличения этого соотношения.
Применение неуправляемых тиристоров считается недостатком конструкции, так как их использование требует усовершенствовать систему регулирования. Она становится более сложной. Кроме того, «зазубренная» форма напряжения на выходе (рис. 2), приводит к появлению высших гармоник. Их наличие сопровождается дополнительными потерями. Которые наблюдаются, в увеличении перегрева электродвигателя, уменьшение крутящего усилия (момент) на валу и появление помех в сети. Поэтому дополнительный монтаж деталей и узлов для устранения этих недостатков, повышает стоимость устройства. Увеличивают его габариты, вес и уменьшают эффективность привода.
В настоящее время преобразователи с прямой (непосредственной) связью не применяют. Сейчас в системах дополнительно включён узел с функцией постоянного тока. При этом задействовано удвоенное трансформирование электроэнергии. Напряжение на входе, с неизменной амплитудой, частотой и формой синусоиды, поступает на клеммы выпрямительного блока (B). Дальше проходит фильтр (Ф), уменьшающий пульсацию высших гармоник. Назначение (И) инвертора — преобразовать постоянное напряжение в переменное варьируемой частоты и амплитуды. При этом используются отдельные внутренние блоки.
Функции электронных ключей, в составе инверторов, выполняют запираемые GTO тиристоры. Или заменяемые его типы: GCT, IGCT, SGCT, а также трёхэлектродным полупроводниковым элементом с изолированным затвором IGBT.
Преимуществом частотника на тиристорах обоих классов является возможность использовать их при повышенных показателях напряжения и тока. Они выдерживают длительную работу, электроимпульсные скачки. Устойчивое функционирование преобразователи частоты поддерживают в широком диапазоне мощностей. С вилкой от сотни кВт до десятка мВт. На выходе ПЧ напряжение составляет от 3 до 10 кв. Однако, сравнивая цену по отношению к мощности, она остаётся завышенной.
Устройства регулируемого привода, в состав которого входили запираемые тиристоры, занимали преобладающее место. Но, потом их сменил транзистор IGBT с изолированным затвором.
Применение тиристора усложняет средство управления. Являясь полупроводниковым элементом, он подключается подачей импульса на регулируемый контакт, достаточно сменить полярность напряжение или понизить величину тока близкую к нулю. Сложность процесса и дополнительные элементы делают систему регулировки более громоздкой.
Транзисторы IGBT отличаются простым способом управления с незначительной затратой расхода энергии. Большой рабочий диапазон частот расширяет границы выбора оборотов электромотора и увеличивает скоростную характеристику. Совместное действие транзистора с микропроцессорным управлением влияет на степень высших гармоник. Кроме того, отмечаются следующие особенности.
- В обмотках и магнитопроводе электродвигателя уменьшаются потери.
- Снижается тепло подогрев.
- Минимум проявлений пульсаций момента.
- Исключаются рывки ротора в зоне небольших частот.
- Сокращаются потери в конденсаторах, трансформаторах, проводах тем самым увеличиваются сроки их эксплуатационной пригодности.
- Приборы измерений и защиты (особенно индукционные) допускают меньшее неточностей, искажённых срабатываний.
Сравнивая ПЧ одинаковой выходной мощности с другими схемами, устройства на транзисторах IGBT отличаются надёжностью, меньшими габаритами, массой. Достигается это за счёт модульной конструкции аппаратных средств. Минимальным набора элементов, составляющих устройство. Защитой от резких колебаний тока и напряжения. Снижением количества отказов и остановок электропривода. Лучшим теплоотводом
Высокая цена низковольтных преобразователей (IGBT) на единицу выходной мощности объясняется трудностью изготовления транзисторных модулей. Рассматривая цену и качество, они предпочтительнее тиристорных. И также надо учитывать постоянную динамику сокращения стоимости производства устройств. Тенденцию к её снижению.
Затруднение в применении высоковольтного привода с прямым изменением частоты является ограничение по мощности свыше двух мВт. Так как увеличение напряжения и рабочего тока укрупняют габариты транзисторного модуля, необходим более высокоэффективный теплоотвод от полупроводника. И как выход, до появления новейших биполярных элементов, модули в преобразователях соединяют последовательно по несколько штук.
Низковольтный ПЧ на IGB транзисторах. Устройство, особенности
Рисунок 3 показывает блочную схему и функции основных узлов. После каждого из них, отображены линии выходных параметров электроэнергии. Подаваемая энергия (Uвх.), в форме синусоиды, неизменной амплитуды, частоты. Дальше — узел постоянного тока, состоящий из неуправляемого или регулируемого выпрямителя 1. Емкостного фильтра 2, с функциями сглаживания пульсации (U выпр.). Потом, сигнал Ud поступает на независимый, автономный инвертор 3, работающий с нагрузкой, которая потребляет ту же частоту.
Он преобразует одно или 3-фазный ток постоянной величины в переменный, имеет приемлемый уровень гармоник, добавленных к выходному напряжению. Собранный на полностью регулируемых полупроводниковых приборах IGBT. Сигналы СУ подсоединяют обмотку электродвигателя к соответствующим полюсам, используя силовые транзисторы. Подключение происходит в период импульсов, моделируемых по синусоиде амплитудой и частотой. Управляемые выпрямители (1) регулируют величину Ud. Функцию сглаживания выполняет электрофильтр (4).
Вывод
В результате работы частотника получают переменное напряжение с варьируемыми показателями. Подавая энергию с такими параметрами на обмотки электродвигателя, выбирают требуемую скорость вращения вала. Статические ПЧ являются наиболее применяемыми в регулировке исполнительных механизмов. Установка управляемого электропривода экономически обоснована в энергосберегающих технологиях.
Принцип работы частотного преобразователя и критерии его выбора для потребителя
Краткое описание назначения, принципа работы и критериев выбора частотного преобразователя, как устройства управления асинхронным электродвигателем.
Асинхронный двигатель с короткозамкнутым ротором является сегодня самым массовым и надежным устройством для привода различных машин и механизмов. Но у каждой медали есть и обратная сторона.
Два основных недостатка асинхронного двигателя – это невозможность простой регулировки скорости вращения ротора, очень большой пусковой ток — в пять, семь раз превышающий номинальный. Если использовать только механические устройства регулирования, то указанные недостатки приводят к большим энергетическим потерям и к ударным механическим нагрузкам. Это крайне отрицательно сказывается на сроке службы оборудования.
В результате исследовательских работ в этом направлении родился новый класс приборов, позволивший решить эти проблемы не механическим, а электронным способом.
Частотный преобразователь с широтно–импульсным управлением (ЧП с ШИМ) снижает пусковые токи в 4-5 раз. Он обеспечивает плавный пуск асинхронного двигателя и осуществляет управление приводом по заданной формуле соотношения напряжение / частота.
Частотный преобразователь дает экономию по потреблению энергии до 50%. Появляется возможность включения обратных связей между смежными приводами, т.е. самонастройки оборудования под поставленную задачу и изменение условий работы всей системы.
Принцип работы частотного преобразователя
Частотный преобразователь с ШИМ представляет собой инвертор с двойным преобразованием напряжения. Сначала сетевое напряжение 220 или 380 В выпрямляется входным диодным мостом, затем сглаживается и фильтруется с помощью конденсаторов.
Это первый этап преобразования. На втором этапе из постоянного напряжения, с помощью микросхем управления и выходных мостовых IGBT ключей, формируется ШИМ последовательность определенной частоты и скважности. На выходе частотного преобразователя выдаются пачки прямоугольных импульсов, но за счет индуктивности обмоток статора асинхронного двигателя, они интегрируются и превращаются наконец в напряжение близкое к синусоиде.
Критерии выбора частотных преобразователей
Выбор по функциям Каждый производитель пытается обеспечить себе конкурентное превосходство на рынке. Первое правило для обеспечения максимума продаж – это низкая цена. Поэтому производитель стремиться включить в свое изделие только необходимые функции. А остальные предлагает в качестве опций. Прежде чем купить частотный преобразователь, определитесь, какие функции вам нужны. Стоит выбирать тот прибор, который имеет большинство необходимых функций в базовом варианте.
По способу управления
Сразу отбрасывайте те преобразователи, которые не подходят по мощности, типу исполнения, перегрузочной способности и т.д. По типу управления, нужно определиться, что выбрать, скалярное или векторное управление.
Большинство современных частотных преобразователей реализуют векторное управление, но такие частотные преобразователи дороже, чем частотные преобразователи со скалярным управлением.
Векторное управление дает возможность более точного управления, снижая статическую ошибку. Скалярный режим только поддерживает постоянное соотношение между выходным напряжение и выходной частотой, но например, для вентиляторов это вполне достаточно.
Векторное управление, начиная с момента его появления, стало чрезвычайно популярной стратегией управления асинхронными электродвигателями. В настоящее время большинство частотных преобразователей реализуют векторное управление или лаже векторное бездатчиковое управление (этот тренд встречается в частотных преобразователях, первоначально реализующих скалярное управление и не имеющих клемм для подключения датчика скорости).
Основной принцип векторного управления состоит в раздельном независимом регулировании тока намагничивания двигателя и квадратурного тока, которому пропорционален механический момент на валу. Ток намагничивания определяет величину потокосцепления ноля ротора и поддерживается постоянным.
В случае стабилизации скорости вращения уставка квадратурного тока вырабатывается с помощью отдельного ПИ-регулятора, входом которого является рассогласование между желаемой и измеренной скоростью вращения двигателя. Таким образом, квадратурный ток всегда устанавливается на минимальном уровне так, чтобы обеспечить достаточный для поддержания заданной скорости механический момент. За счет этого векторное управление обладает высокой энергетической эффективностью.
Если мощности оборудования примерно одинаковы, то выбирайте преобразователи одной фирмы с мощностью по мощности максимальной нагрузки. Так вы обеспечите взаимозаменяемость и упростите обслуживание оборудования. Желательно, чтобы сервис центр выбранного частотного преобразователя был в вашем городе.
По сетевому напряжению
Всегда выбирайте преобразователь с максимально широким диапазоном напряжений как вниз, так и вверх. Дело в том, что для отечественных сетей само слово стандарт может вызвать только смех сквозь слезы. Если пониженное напряжение приведет, скорее всего, к отключению частотного преобразователя, то повышенное может вызвать взрыв сетевых электролитических конденсаторов и входу прибора из строя.
По диапазону регулировки частоты
Верхней предел регулировки частоты важен при использовании двигателей с высокими номинальными рабочими частотами, например для шлифовальных машин ( 1000 Гц и более). Убедитесь, что диапазон частот соответствует вашим потребностям. Нижний предел определяет диапазон регулирования скорости привода. Стандарт – это 1:10. Если вам нужен более широкий диапазон, то выбирайте только векторное управление, запросите параметры привода у производителя. Даже заявленный предел от 0 Гц, не гарантирует устойчивую работу привода.
По количеству входов управления
Дискретные входы нужны для ввода команд управления (пуск, стоп, реверс, торможение и т.д.). Аналоговые входы необходимы для ввода сигналов обратной связи (регулировки и настройки привода в процессе работы). Цифровые входы нужны для ввода высокочастотных сигналов от цифровых датчиков скорости и положения (энкодеров). Количество входов много не бывает, но чем больше входов, тем сложнее систему можно построить, и тем она дороже.
По количеству выходных сигналов
Дискретные выходы используются для выхода сигналов о различных событиях (авария, перегрев, входное напряжение выше или ниже уровня, сигнал ошибки ит.д.). Аналоговые выходы используются для построения сложных систем с обратными связями. Рекомендации по выбору аналогичны предыдущему пункту.
По шине управления
Оборудование, с помощью которого вы будете управлять частотным преобразователем должно иметь ту же шину и количество входов выходов что и выбранный вами частотный преобразователь. Предусмотрите некоторый запас по входам и выходам для дальнейшей модернизации.
По сроку гарантии
Срок гарантии косвенно позволяет оценить надежность частотного преобразователя. Естественно, нужно выбирать частотный преобразователь с большим сроком. Некоторые производители оговаривают особо случаи поломок, которые не являются гарантийными. Всегда тщательно читайте документацию и посмотрите в интернете отзывы о моделях и производителях оборудования. Это поможет правильному выбору. Не жалейте денег на качественный сервис и обучение персонала.
По перегрузочным способностям
В первом приближении, мощность частотного преобразователя нужно выбирать на 10-15% больше мощности двигателя. Ток преобразователя должен быть больше номинального тока двигателя и чуть больше тока возможных перегрузок.
В описании на конкретный механизм обычно указывают токи перегрузок и длительность их протекания. Читайте документацию! Это вас развлечет, и возможно, обезопасит от поломок оборудования в будущем. Если для привода характерны еще и ударные (пиковые) нагрузки (нагрузки в течении 2-3 сек), то необходимо выбрать преобразователь по пиковому току. Опять возьмите запас 10%.
Смотрите также по этой теме: Частотные преобразователи VLT AQUA Drive для насосных установок
Частотные преобразователи
Назначение.
Преобразователи частоты представляют собой устройства силовой промышленной электроники и предназначены для преобразования однофазного или трехфазного напряжения сети переменного тока постоянной частоты в трехфазное напряжение регулируемой частоты. Возможность регулирования частоты выходного напряжения позволяет применять частотные преобразователи для изменения скорости вращения электродвигателей, одновременно обеспечивая умную защиту подключенной нагрузки. Кроме основной защиты от перегрузки по току, большая часть современных преобразователей частоты оснащена функциями защиты от понижения напряжения источника питания (защита ЗМН), перенапряжения, однофазного короткого замыкания на землю и других неисправностей. Наличие этих опций значительно увеличивает срок безаварийной эксплуатации электродвигателей. Регулирование частоты осуществляется по закону V/f или используется векторное управление. Системы под управлением частотных преобразователей обладают высоким коэффициентом полезного действия. За счет этого, а также благодаря возможности динамического изменения скорости вращения электродвигателя в зависимости от входных сигналов с датчиков или по заданной оператором программе, применение частотных преобразователей дает возможность снизить затраты на потребляемую электроэнергию до 30%. Окупаемость использования систем управления с преобразователями частоты в среднем достигается в первые 1-2 года после внедрения. В случае выхода из строя, частотные преобразователи подлежат ремонту, подробнее об этом написано в данной статье.
Устройство.
Частотный преобразователь состоит из нескольких основных электронных узлов.
- Однофазный или трехфазный выпрямительный мост на основе диодов, тиристоров соединенных чаще всего по схеме Ларионова для трехфазных цепей.
- ЭМС фильтр содержит дроссель на ферритовом сердечнике и неполярные конденсаторы.
- Емкостная часть цепи постоянного тока состоит из сборки конденсаторов включенных последовательно для увеличения общего номинального напряжения и параллельно для увеличения общей емкости.
- Схема управления собрана на основе микропроцессора, драйвера, опторазвязки.
- Источник питания чаще всего состоит из многоканального импульсного блока питания с выходными каналами +5В, +12В, -12В, +24В. В редких случаях используются источники питания на основе низкочастотных понижающих трансформаторов.
- Силовая часть частотных преобразователей обычно состоит из шести IGBT транзисторов, объединенных в IGBT модули.
- Схема измерения основана на датчиках тока Холла.
- Схема ввода-вывода представлена чаще всего в виде отдельной платы с АЦП, ЦАП, оптической развязкой, интерфейсом связи RS-485.
- Узел ограничения зарядного тока конденсаторов цепи постоянного тока содержит термистор для устройств небольшой мощности или ограничительный резистор, шунтирующий нормально открытые контакты реле (контактора) для мощных частотных преобразователей.
- Цепь торможения — тормозной резистор применяется для динамического торможения электродвигателей средней и большой мощности и может быть как встроенным, так и внешним по отношению к преобразователю частоты.
- Система охлаждения может содержать радиатор и вентиляторы.
- Панель управления с цифровым дисплеем — может являться как обязательной частью частотного преобразователя, так и независимым устройством для считывания и записи настроек.
Принцип действия.
Выпрямленное напряжение от шины постоянного тока поступает на IGBT транзисторы, которые управляются через оптическую развязку от драйвера ШИМ. На драйвер сигналы управления через схему согласования уровней передаются от микропроцессора, содержащего алгоритм управления. По этому алгоритму происходит управление работой драйвера и далее взаимозависимое открытие-закрытие соответствующих выходных транзисторов. В результате на выходе каждого из трех каналов будут получены сигналы синусоидальной формы со смещением друг относительно друга. Чем выше частота переключения ШИМ — тем больше форма синусоиды близка к идеальной. Наиболее частыми значениями частоты работы ШИМ являются 4 кГц, 8 кГц, 16 кгц. Эти значения могут быть изменены пользователем в процессе подготовки к эксплуатации.
Время выполнения запроса: 0,00217390060425 секунд.
Что такое преобразователь частоты
Преобразователь частоты (ПЧ) — это тип контроллера двигателя, который приводит электродвигатель в движение, изменяя частоту и величину подаваемого на него напряжения. Преобразователи частоты (ПЧ) также могут управлять плавным разгоном и замедлением электродвигателей при запуске и останове соответственно.
Хотя преобразователь частоты управляет частотой и величиной напряжения, подаваемого на электродвигатель, его функцию часто называют «регулированием скорости», поскольку в результате происходит изменение скорости вращения двигателя.
Есть целый ряд причин, по которым может быть необходимо изменять скорость вращения двигателя.
Например, это позволяет:
- экономить энергию и повысить эффективность работы системы
- преобразовывать мощность в решениях гибридизации
- устанавливать для преобразователя скорость работы, соответствующую требованиям технологического процесса
- согласовать крутящий момент двигателя с требованиями технологического процесса
улучшить условия труда
понизить уровень шума, например от работы вентиляторов и насосов - снизить механические нагрузки на устройства, чтобы продлить срок их службы
срезать пики энергопотребления, чтобы избежать оплаты по пиковой цене и получить возможность использовать двигатели меньших размеров
Кроме того, в современных преобразователях частоты интегрированы функции диагностики и сетевого взаимодействия, что позволяет более эффективно управлять рабочими характеристиками и повысить продуктивность оборудования. Итак, экономия энергии, интеллектуальное управление электродвигателем и уменьшение пиковых значений тока — это три весомые причины, чтобы выбрать ПЧ в качестве контроллера для любой системы управления электродвигателем.
Наиболее распространенный вариант использования преобразователей частоты— это управление вентиляторами, насосами и компрессорами: для этого применяется более 75 % всех установленных в мире преобразователей частоты.
Также существуют более простые типы контроллеров двигателей, такие как устройства плавного пуска и безреостатные контакторы. Устройство плавного пуска — это полупроводниковый прибор, который обеспечивает плавную раскрутку до полной скорости при запуске электродвигателя.
Безреостатный контактор — это тип контроллера двигателя, который подает на электродвигатель полное линейное напряжение.
Чем отличаются преобразователи компании Danfoss?
Различие между преобразователями компании Danfoss и других поставщиков заключается в том, что Danfoss — это мировой лидер рынка преобразователей частоты, компания, которая специализируется исключительно на преобразователях частоты. Поэтому вы получите высококачественный преобразователь частоты, настроенный в точном соответствии вашим требованиям. Кроме того, все до единого преобразователи тщательно тестируются перед отгрузкой с завода. Наши эксперты уделяют пристальное внимание каждому возможному аспекту оптимизации работы преобразователей частоты; мы всегда находимся на передовом фронте разработки новейших технологий. Ассортимент нашей продукции часто обновляется инновационными разработками. Компания Danfoss Drives предлагает широкий ассортимент преобразователей частоты VLT® и VACON®, причем вы получаете намного больше, чем просто частотный преобразователь. Вы также получаете доступ к нашим ноу-хау в различных областях применения и к набору услуг обслуживания, которые обеспечат оптимальную работу ваших систем в течение всего жизненного цикла преобразователя.
Мы предлагаем компоненты высочайшего качества и максимальную гибкость выбора, так что вы можете подобрать агрегаты с такими характеристиками, которые точно соответствуют требованиям конкретного применения. Важным аспектом такой гибкости является возможность использования преобразователей с двигателями всех распространенных технологий, поскольку преобразователи частоты VLT® и VACON® сконструированы с расчетом на максимальную совместимость. За счет этого можно достичь существенной экономии на поддержании наличия запасных частей, а также при модернизации устаревшего оборудования.
Частотные преобразователи. Работа и устройство. Типы и применение
Ротор электродвигателя начинает свое вращение с помощью электромагнитных сил от вращающегося магнитного поля, вызванного обмоткой якоря. Число оборотов определяется частотой тока в сети. Стандартное значение частоты тока составляет 50 герц. Это означает, что 50 периодов колебаний совершается за 1 секунду. В минуту число колебаний составит 50 х 60 = 3000. Значит, ротор будет вращаться 3000 оборотов в минуту.
Если научиться изменять частоту тока, то появится возможность регулировки скорости двигателя. Именно по этому принципу действуют частотные преобразователи.
Современное исполнение преобразователей частоты выглядит в виде высокотехнологичного устройства, состоящего из полупроводниковых приборов, совместно с микроконтроллером электронной системы. С помощью этой системы управления изменяются важные параметры электродвигателя, например, число оборотов.
Изменить скорость привода можно и с помощью механического редуктора шестеренчатого типа, либо на основе вариатора. Но такие механизмы имеют громоздкую конструкцию, их нужно обслуживать. С использованием частотника (инвертора) снижается расход на техническое обслуживание, повышается функциональность привода механизма.
По конструктивным особенностям частотные преобразователи делятся:
- Индукционные.
- Электронные.
Электродвигатели асинхронного типа с фазным ротором, подключенные в режим генератора, представляют подобие индукционного частотного преобразователя. Они имеют малые КПД и эффективность. В связи с этим такие виды преобразователей не нашли популярности в использовании.
Электронные виды частотников дают возможность плавного изменения оборотов электродвигателей.
При этом реализуются два возможных принципа управления:
- По определенной зависимости скорости от частоты тока.
- По способу векторного управления.
Первый принцип самый простой, но не совершенный. Второй принцип применяется для точного изменения оборотов двигателя.
Конструктивные особенности
Рис. 1
Частотные преобразователи имеют в составе основные модули:
- Выпрямитель.
- Фильтр напряжения.
- Инверторный узел.
- Микропроцессорная система.
Все модули связаны между собой. Действие выходного каскада (инвертора) контролирует блок управления, с помощью которого меняются свойства переменного тока. Частотный преобразователь для электромотора имеет свои особенности. В его состав входит несколько защит, управление которыми осуществляется микроконтроллером. Например, проверяется температура полупроводников, работает защита от превышения тока и короткого замыкания. Частотник подключается к сети питания через устройства защиты. Для запуска электродвигателя не нужен магнитный пускатель.
Выпрямитель
Это первый модуль, по которому проходит ток. Он преобразует переменный ток в постоянный, благодаря полупроводниковым диодам. Особенностью частотника является возможность его питания от однофазной сети. Разница в конструкции состоит в разных типах выпрямителей.
Если мы говорим про однофазный частотник для двигателя, то нужно использовать в выпрямителе четыре диода по мостовой схеме. При трехфазном питании выбирается схема из шести диодов. В итоге получается выпрямление переменного тока, появляется два полюса: плюс и минус.
Фильтр напряжения
Из выпрямителя выходит постоянное напряжение, которое имеет значительные пульсации, заимствованные от переменного тока. Для их сглаживания используют такие элементы, как электролитический конденсатор и катушка индуктивности.
Катушка имеет много витков, и обладает реактивным сопротивлением. Это дает возможность сглаживать импульсы тока. Конденсатор, подключенный к двум полюсам, имеет интересные характеристики. При прохождении постоянного тока он в силу закона Киргофа должен быть заменен обрывом, как будто между полюсами ничего нет. При прохождении переменного тока он должен быть проводником, то есть, не иметь сопротивления. В результате доля переменного тока замыкается и исчезает.
Инверторный модуль
Это узел, имеющий наибольшую важность в преобразователе частоты. Он изменяет параметры тока выхода, состоит из шести транзисторов. Для каждой фазы подключены по два транзистора. В каскаде инвертора применяются современные транзисторы IGBT.
Если изготавливать частотные преобразователи своими руками, то необходимо выбирать элементы конструкции, исходя из мощности потребления. Поэтому нужно сразу определить тип электродвигателя, который будет питаться от частотника.
Микропроцессорная система
В самодельной конструкции не получится добиться таких параметров, имеющихся у заводских моделей, так как в домашних условиях сделать управляющий модуль сложно. Дело не в пайке деталей, а в создании программы для микроконтроллера. Простой способ – это сделать управляющий блок, которым можно регулировать обороты двигателя, осуществлять реверс, защищать двигатель от перегрева и перегрузки по току.
Чтобы изменить обороты мотора, нужно применить переменное сопротивление, подключенное к вводу микроконтроллера. Это устройство подает сигнал на микросхему, которая производит анализ изменения напряжения и сравнивает его с эталоном (5 вольт). Система действует по алгоритму, который создается до начала создания программы. По нему действует микропроцессорная система.
Приобрели большую популярность управляющие модули Siemens. Частотные преобразователи этой фирмы надежны, могут применяться для любых электродвигателей.
Принцип действия
Основа работы инвертора состоит в двойном изменении формы электрического тока.
Напряжение подается на блок выпрямления с мощными диодами. Они удаляют гармонические колебания, однако оставляют импульсы сигнала. Чтобы их удалить, подключен конденсатор с катушкой индуктивности, образующие фильтр, который стабилизирует форму напряжения.
Далее, сигнал идет на частотный преобразователь. Он состоит из шести мощных транзисторов с диодами, защищающими от пробоя напряжения. Ранее для таких целей применялись тиристоры, но они не обладали таким быстродействием, и создавали помехи.
Чтобы подключить режим замедления мотора, в схему устанавливают транзистор управления с резистором, который рассеивает энергию. Такой способ дает возможность удалять образуемое двигателем напряжение, чтобы защитить емкости фильтра от выхода из строя вследствие перезарядки.
Метод управления векторного типа частотой инвертора дает возможность создания схемы, которая автоматически регулирует сигнал. Для этого применяется управляющая система:
- Амплитудная.
- Широтно-импульсная.
Амплитудная регулировка работает на изменении напряжения входа, а ШИМ – порядка действия переключений транзисторов при постоянном напряжении на входе.
При регулировании ШИМ образуется период модуляции, когда обмотка якоря подключается по очереди к выводам выпрямителя. Так как тактовая частота генератора высокая и находится в интервале 2-15 килогерц, то в обмотке мотора, имеющего индуктивность, осуществляется сглаживание напряжения до нормальной синусоиды.
Принцип подключения ключей на транзисторах
Каждый из транзисторов включается по встречно-параллельной схеме к диоду (Рис. 1). Через цепь транзистора протекает активный ток электродвигателя, реактивная часть поступает на диоды.
Чтобы исключить влияние помех на действие инвертора и электродвигателя, в схему подключают фильтр, который удаляет:
- Радиопомехи.
- Помехи от электрооборудования.
Об их образовании дает сигнал контроллер, чтобы снизить помехи, применяются экранированные провода от двигателя до выхода инвертора.
Чтобы оптимизировать точность функционирования асинхронных двигателей, в цепь управления инверторов подключают:
- Ввод связи.
- Контроллер.
- Карта памяти.
- Программа.
- Дисплей.
- Тормозной прерыватель с фильтром.
- Охлаждение схемы вентилятором.
- Прогрев двигателя.
Схемы подключения
Частотные преобразователи служат для работы в 1-фазных и 3-фазных сетях. Но если имеются промышленные источники питания на 220 вольт постоянного тока, то инверторы также можно подключать к ним.
Частотные преобразователи для 3-фазной сети рассчитаны на 380 вольт, их подают на мотор. 1-фазные частотники работают от сети 220 вольт, выдают на выходе 3 фазы. Частотник может подключаться к электродвигателю по схеме звезды или треугольника.
Обмотки мотора соединяются в «звезду» для частотника, работающего от трех фаз 380 вольт.
Обмотки двигателя соединяют «треугольником», когда инвертор запитан от 1-фазной сети.
При выборе метода подключения электродвигателя к частотнику необходимо определить мощности, которые создает двигатель на разных режимах, в том числе и медленный режим, тяжелый запуск. Преобразователь частоты нельзя эксплуатировать с перегрузкой длительное время. Его мощность должна быть с запасом, тогда работа будет без аварий, и срок службы продлится.
Частотный преобразователь как средство повышения эффективности насосов
Оптимизация процессов и сокращение издержек важны на любом уровне — от крупного предприятия до частного индивидуального хозяйства. Существенно повысить эффективность помогает модернизация насосного оборудования. Включение в систему частотного преобразователя для управления насосами улучшает качество работы и заметно экономит денежные средства на обслуживание и ремонт.
Что такое преобразователь частоты, зачем он нужен
Частотный преобразователь (ПЧ, преобразователь частоты, частотник, частотный регулятор) — современное высокотехнологичное устройство с микропроцессорным управлением, множеством функций и гибкими настройками.
Частотники созданы для качественного контроля скорости и/или момента электродвигателей переменного тока любого назначения, методом согласованного изменения выходной частоты и напряжения. Современные модели способны преобразовывать 50 Гц входящей электросети в необходимые значения. Встроенный инвертор формирует электрическое напряжение заданной формы на обмотках контролируемого электродвигателя. Благодаря этому можно плавно запускать и останавливать двигатель, поддерживать его обороты в нужном диапазоне и оперативно изменять их до нужных значений.
В насосных системах функцию привода выполняет электродвигатель. Поэтому для управления насосом частотник подходит наиболее оптимально. Практически любой электронасос можно дооснастить преобразователем.
Разновидностей ПЧ существует множество. Для управления однофазными и трехфазными электронасосами используют универсальные общепромышленные (например, «Веспер» из линейки EI-7011), которые управляют любыми электродвигателями в широком диапазоне мощностей.
Но выгоднее купить для насосов специализированный частотный преобразователь (например, «Веспер» E5-Р7500. Такие модели ПЧ настроены на выполнение конкретного круга задач, заранее оснащены всем необходимым — переплачивать за лишний функционал не нужно.
Помимо опций и функционала, преобразователь частоты для насоса должен соответствовать мощностным характеристикам управляемого привода. Производители насосов в техническом паспорте указывают, какой преобразователь подойдет к данной модели оборудования. Если таких рекомендаций нет, за помощью по подбору можно обратиться к специалистам компании «Веспер».
Принцип работы преобразователя частоты в тандеме с насосом
Классическая водопроводная насосная система, без ПЧ в контуре, работает по принципу дросселирования. Электродвигатель в этой схеме постоянно работает на максимальных оборотах, а давление в системе регулируется запорной арматурой, управление в лучшем случае осуществляется с помощью реле или же вручную.
Метод имеет ряд существенных недостатков:
- быстрый износ оборудования;
- высокий расход электроэнергии;
- частые аварийные ситуации;
- низкое качество работы.
Лишь в периоды пикового потребления воды насос работает в режиме максимальной нагрузки. Во всех остальных случаях повышенная мощность оборудования не оправдана. Это учитывается в продвинутой классической схеме, за остановку и старт электронасоса отвечает автоматика (реле). Но так как реле не способно регулировать обороты привода, по сигналу происходит резкий старт на максимальные обороты. Это приводит к гидроударам и перегрузкам в электросети, в результате система быстро изнашивается.
Частотные преобразователи «Веспер» для управления насосами оснащены микропроцессорами с обратной связью. С их помощью можно интеллектуально и бережно регулировать работу оборудования в соответствии с текущими потребностями системы.
Алгоритм работы прост. Когда датчики фиксируют, что уровень давления в трубопроводе либо уровень в резервуаре упал ниже минимума, передается сигнал на преобразователь. Тот плавно запускает электромотор насоса, ударные нагрузки на трубопровод и электросеть исключаются. Подходящее время разгона электродвигателя можно выставить самостоятельно.
Датчики в режиме реального времени передают на преобразователь информацию в процессе разгона насоса. После того, как требуемые величины достигаются, ПЧ прекращает разгон и поддерживает частоту оборотов электромотора. Если уровень снова начнет падать или расти, микропроцессор автоматически отрегулирует давление, изменив производительность насоса. Параллельно частотник выполняет функции защиты (отключает оборудование при сильных колебаниях тока в электросети).
Где используются насосные пч, плюсы и минусы применения
Частотники можно использовать с насосными установками самого различного назначения. Особенно важны частотные преобразователи для насосов систем горячего и холодного водоснабжения, отопления. Результат модернизации конечный потребитель ощутит и оценит сразу же. Водонапорная система с ПЧ в составе функционирует полностью в автономном режиме. При этом качество подачи воды остается неизменным в любое время суток.
Масштаб системы не имеет значения. ПЧ способны заметно поднять эффективность промышленных насосных станций и бытовых колодезных и артезианских миниводокачек на один дом.
Преимущества управления насосами с преобразователем частоты:
- экономия электроэнергии (до 30–40%);
- исключена ситуация «сухого хода» (без воды в системе);
- нет температурных скачков при подаче горячей воды;
- стабильная сила напора;
- отсутствует избыточное давление в трубах;
- продлен ресурс электронасоса и трубопровода;
- снижен уровень шума;
- можно упростить систему, убрать из схемы гидроаккумулятор и др. ненужные узлы и агрегаты.
Минусы схемы с ПЧ:
- начальные вложения на покупку прибора;
- необходим специалист для подключения и настройки оборудования.
Эти недостатки быстро компенсируются за счет удешевления обслуживания. В результате сокращаются издержки на поддержание работоспособности и ремонт, стоимость владения в целом уменьшается, а комфорт заметно повышается.
Принцип работы частотного преобразователя. Схема частотного привода.
Электроприводы постоянного тока являются очень простыми с точки зрения организации системы регулирования скорости вращения двигателя, но сам электродвигатель является слабым звеном системы, ведь он достаточно дорогой и при этом не отличается особой надежностью. К тому же область применения данных двигателей ограничена из-за излишнего искрения щеток и, следовательно, повышенной электроэрозии и износа коллектора, что к общем не позволяет использовать двигатели постоянного тока в пыльных условиях и в средах с опасностью взрыва. Альтернативой электроприводам постоянного тока является комплексное применение асинхронных двигателей переменного тока с частотными преобразователями.
Асинхронные двигатели повсеместно используются в виду очень простого устройства и надежности, при меньших габаритах и массе они обеспечивают такую же мощность, как и двигатели постоянного тока. Главным минусом их является сложность организации системы регулирования скорости двигателя традиционными для двигателей постоянного тока методами. Теоретическая база для разработки первых частотных преобразователей, которые могли уже тогда стать решением вопроса регуляции скорости, была заложена еще в 30-е годы двадцатого века. Отсутствие микропроцессоров и транзисторов не позволяло воплотить теорию в практику, но с появлением транзисторных схем и управляющих микропроцессоров в Японии, США и Европе примерно в одно время были разработаны варианты частотных преобразователей.
При наличии других способов управления скорости вращения исполняющих механизмов (речь идет о механических вариаторах, резисторных группах, вводимыми в ротор/статор, электромеханических частотных преобразователях, гидравлике) наиболее эффективным является использование статических частотных преобразователей, который экономическим выгоднее других вариантов в виду дешевизны монтажа, эксплуатации и высокого КПД. Неприхотливость преобразователей также обусловлена отсутствием подвижных частей в виду того, что регуляция осуществляется на этапе подачи тока и основана на изменении параметров питания, а не на контроле за скоростью вращения при помощи средств механического управления.
Каков принцип частотных методов регулирования? Наглядное объяснение можно вывести из следующей формулы
Из выражения видно, что путем изменения частоты входного питающего напряжения (f1) изменяется угловая скорость статора, точнее его магнитного поля, но этом взаимозависимые характеристики. Эффект достигается при постоянном числе пар полюсов (p). Что это дает? В первую очередь, плавность регулирования (в особенности при пиковых нагрузках в момент пуска двигателя) скорости при очень высокой жесткости механических характеристик. Также достигается повышенное скольжение асинхронного двигателя, что существенно снижает потери мощности и увеличивает коэффициент полезного действия.
Высокие показатели КПД, коэффициента мощности, перегрузочной способности достигаются при одновременном изменении частоты и напряжения. Законы изменения этих параметров напрямую зависят от момента нагрузки, который может иметь статичный, вентиляторный и обратно пропорциональный скорости вращения характер.
При постоянном моменте нагрузке напряжение на статоре будет регулироваться в пропорциональной зависимости от частоты, что хорошо видно из формулы:
Если момент нагрузки имеет вентиляторный характер, то напряжение будет пропорционально квадрату частоты питающего напряжения.
Ну и моменте нагрузки, который обратно пропорционален скорости получим:
Как видно из вышеописанного при обеспечении одновременного регулирования частоты питающего напряжения и параметров напряжения на статоре частотным преобразователем достигается плавное бесступенчатое регулирование скорости вращения вала двигателя. При этом отсутствие передач позволяет более точно регулировать скорость вращения по заданным пользователем параметрам.
Основные достоинства применения регулируемых приводов на предприятиях.
Интеграция систем регулирования качественно изменяет технические характеристики всех участников технологического процесса, нуждающегося в регуляции. Большая часть экономической эффективности заключается в возможности регулирования при помощи частотного преобразователя технологических характеристик процессов, температуры, давления, скорости движения, скорости подачи главного движения. Конечно же, максимальная эффективность достигается на объектах, предназначенных для перемещения жидких масс. До сих пор популярным способом регулирования скорости потока и мощности является применение заслонок и заглушек, в частных случаях различных регулирующих механических клапанов, но эти методы менее эффективны чем изменение скорости самого исполнительного механизма и чреваты потерями транспортируемой жидкости.
Разница в производительности и эффективности между дросселированием посредством механических средств и применением частотных преобразователей очевидна на следующем рисунке. (схема 1) Из схемы становится ясно, что возрастает экономия ресурсов, а также нивелируются проблемы, связанные с полной потерей динамической мощности потока во время закрытия заслонок, что приводит, по сути, к холостой работе двигателя. Это увеличивает экономическую эффективность частотных преобразователей.
Конструкция типового частотного преобразователя.
Принципиальной задачей преобразователя частоты является изменение параметров электрического тока, это осуществляется при помощи транзисторного выпрямления тока и преобразования его до необходимых заданных значений. Типовой частотный преобразователь состоит из трех частей:
— Звено постоянного тока. Состоит из выпрямителя и фильтрационных устройств. Звено постоянного тока принимает входной сигнал и перенаправляет его в инвертор.
— Импульсного инвертора. Силовой трехфазный инвертор обычно имеет шесть транзисторов-ключей и осуществляет преобразование тока до заданных частот и амплитуд, а затем подает его на статор. Инвертор может состоять из тиристорной схемы.
— Микропроцессорной системы управления. Управляет системами преобразования и защиты преобразователя.
Четкая синусоида выходного сигнала – результат работы IGBT-транзисторов в качестве ключей инвертора, которые работают с более высокой частотой переключения, чем устаревшие тиристоры.
Как работает частотный преобразователь?
Схема преобразователя представлена в наглядном виде на следующем рисунке. (схема 2)
На схеме отображены основные структурные части преобразователя, а именно: инвертор, диодный силовой выпрямитель, модуль управления широтно-импульсной модуляцией, система управления, дроссель и конденсатор фильтра. Регуляция выходной частоты и напряжения (fвых. и Uвых., соответственно) осуществляется путем широтно-импульсного управления высокой частоты. Управление зависит от периодичности модуляции. Это период, в течение которого статор по очереди получает сигнал от положительного и отрицательного полюса напряжения. Длительность периода модулируется согласно синусоидальному закону гармонических частот, дополнительное преобразование происходит уже в обмотках двигателя, где после фильтрации ток имеет уже строго синусоидальную форму.
Сама кривая выходного напряжения – это двуполярная последовательность высокой частоты, созданная прямоугольными импульсами. Данные параметры также регулируются широтно-импульсной модуляцией, а сама ширина импульсов модулируется по синусоидальному закону. Изменение характеристик выходного напряжения осуществляется одним из двух способов: изменение AP (амплитуды) путем регуляции значения входного напряжения Uвх.; при Uвх., имеющим постоянное значение, путем внесения изменений в программу, контролирующую периодичность переключения переключателей V1-V6. Наличие современных IBGT-транзисторов на микропроцессорном управлении применение второго способа является более продуктивным и широко используемым. ШИМ также позволяет добиться формы кривой тока близкой к синусоиде, но уже благодаря свойствам обмоток, выполняющих функции фильтра.
Данный метод управления также позволяет существенно увеличить коэффициент полезного действия преобразователя и по своим характеристикам полностью аналогично методике управления путем изменения амплитуды и частоты тока. В наше время существует несколько компоновок инверторов с управляемыми ключами: запираемые GTO тиристоры; биполярные IGBT-транзисторные ключи с затвором. С примером можно ознакомиться на следующем рисунке. (рисунок 2) Здесь изображена мостовая трехфазная схема с использованием IGBT-транзисторов. Инвертор автономный. В данной схеме используется комплекс из 6 транзисторных ключей (на схеме V1-V6), емкостного фильтра тока. Транзисторы включены при помощи диодов обратного тока (на схеме D1-D6) по встречно-параллельной схеме.
Алгоритм переключения вентилей задается микропроцессором, переключение преобразует постоянное Uвх. в переменное выходное напряжение с прямоугольными импульсами. Активная составляющая токового потока асинхронного двигателя проходит через транзисторы, а реактивная – через диоды обратного тока.
И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;