Kontakt-bak.ru

Контракт Бак ЛТД
40 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать пусковой ток

Как рассчитать пусковой ток

Вы хотите, чтобы стабилизатор напряжения, источник бесперебойного питания или генератор служили безотказно? Тогда эта статья будет для вас полезна.

Одна из основных характеристик бытовых приборов — электрическая мощность на выходе. Она отражает возможность питания подключённой нагрузки. Для правильного выбора стабилизатора напряжения переменного тока, ИБП или генератора нужно знать мощность устройства. Для ее расчета следует подсчитать сумму электрической мощности всех приборов, которые могут быть единовременно подключены.

Одно из основных условий долгой и стабильной работы стабилизатора, генератора и ИБП: мощность техники не должна превышать их возможности по выходной мощности. Лучше, чтобы суммарная электрическая мощность электроприборов, которые функционируют одновременно, была на 20 % меньше выходной мощности питающего прибора. Чем меньше стабилизатор или ИБП работает с перегрузкой, тем дольше он служит.

В расчете суммарной мощности и состоит основная трудность. В паспорте любого устройства указана мощность в кВт. Вроде бы всё просто: нужно сложить мощность приборов. Но в этом кроется основная ошибка. Приборы, в конструкции которых есть электродвигатели, насосы или компрессоры, в момент запуска дают нагрузку на сеть, превышающую номинал в Такое явление обусловлено наличием пусковых токов. Это же правило относится к приборам, в состав которых входят инерционные компоненты или элементы, физические свойства которых в момент запуска отличаются от их обычных значений при эксплуатации. Классический пример — изменение сопротивления у обыкновенной лампы накаливания. В конструкции таких ламп есть вольфрамовая нить, при включении электрическое сопротивление вольфрама меньше (нить холодная), чем при работе. Сопротивление увеличивается с ростом температуры, следовательно, при включении лампы её мощность намного больше, чем во время работы. При включении лампы накаливания присутствуют пусковые токи.

Мощность любого прибора рассчитается как произведение напряжения (в вольтах) и силы тока (в амперах). По мере увеличения силы тока растет мощность, а значит, возрастает нагрузка на стабилизатор, генератор и источник питания. Определение пусковых токов можно сформулировать так: электроприборы или их элементы, имеющие инерционные свойства, в момент запуска дают большую нагрузку на электрическую сеть или питающий прибор, чем в процессе работы.

Значение пусковых токов зависит не только от усилия по раскрутке ротора двигателя или насоса до номинальных оборотов, но и от изменения сопротивления проводника. Чем меньше сопротивление, тем больше величина силы тока, который может протекать по нему. При нагреве уменьшается сопротивление и снижается возможность проводника пропускать большие токи.

Помимо вращающего момента и электросопротивления дополнительную электрическую мощность в момент старта прибору придаёт индуктивная мощность. В момент включения люминесцентной лампы у индуктивной катушки сопротивление мало. Также действует мощность для поджига разряда, что увеличивает силу тока.

Влияние пусковых токов особенно важно для стабилизаторов напряжения и источников бесперебойного питания on-line типа. Стабилизаторы работают в одном из двух режимов работы: номинальном или предельном.

В номинальном режиме работы сохраняется мощность, но при ухудшении качества электроснабжения в сети наблюдается очень низкое или, напротив, очень высокое напряжение. В таком случае стабилизатор переходит в предельный режим работы, его выходная мощность снижается примерно на 30 %. Если при этом происходит перегрузка по пусковым токам, то он выключится, сработает система защиты. Если это будет повторяться часто, срок службы качественного стабилизатора будет небольшим (что уж говорить о китайской технике).

С ИБП типа on-line дела обстоят сложнее. Если на такой прибор дается нагрузка, превышающая номинальную (а у пусковых токов очень большая скорость, и они проходят любую защиту), предохранители не успевают сработать, и источник питания может сгореть. Это негарантийный случай и ремонт будет стоить значительных средств.

Единственный вид ИБП, который может выдерживать пусковые токи, в раза превышающие номинал, — системы резервного электропитания линейно-интерактивного типа. Максимальные пусковые токи дают компрессоры холодильников (однокамерные — до 1 кВт, двухкамерные — до 1,8 кВт), а также глубинные насосы. Их мощность во время запуска превышает номинал в Самый маленький коэффициент запуска (равный 2) отмечается у насосов Grundfos с системой плавного пуска.

При выборе источников электроснабжения или стабилизатора напряжения нужно учитывать временной фактор влияния пусковых токов. При первом включении стабилизатора или генератора все электроприборы начнут работу одновременно и суммарная нагрузка будет большая. При дальнейшей работе потребитель должен оценить вероятность одновременного запуска приборов с большими пусковыми токами (к примеру, холодильника, насоса и стиральной машины). Если стабилизатор или ИБП имеет небольшую мощность, то следует самостоятельно контролировать включение техники с пусковыми токами.

Выводы:

  • При подсчёте суммарной мощности электротехники мощность приборов с пусковыми токами нужно рассчитывать не по номиналу, а с учётом пусковых токов (в Вт либо в А).
  • Пусковые токи даёт техника, в конструкции которой есть электродвигатель, насос, компрессор, нить накаливания или катушка индуктивности.
  • Чем хуже напряжение в магистральном проводе (ниже 150 В или выше 250 В), тем более высокий номинал должен быть у стабилизатора или ИБП (примерно на 30 % больше суммарной мощности работающей техники).

Пусковые токи можно ассоциировать с началом движения велосипеда: в момент начала движения нужно большое усилие, чтобы раскрутить колёса, но когда велосипед приходит в движение, требуется меньше сил для поддержания скорости.

Примеры номинальной мощности и мощности при запуске бытовой техники

Тип техникиНоминальная мощность, ВтПродолжительность пусковых токов, сКоэффициент во время начала работыПример модели стабилизатора, ВАПример модели ИБП
Холодильник43«Штиль» R1200 / Progress 1500TN-Power Pro-Vision Black M 3000 LT
Стиральная машина2500Progress 3000T
Микроволновая печь16002«Штиль» R2000
КондиционерProgress 5000L
Пылесос15002Progress 3000T
Кухонный комбайн7Progress 2000T
Посудомоечная машина22003Progress 3000L
Погружные скважинные насосы, глубинные насосы2Progress 3000LДПК-1/1-3-220-М
Циркуляционные насосы«Штиль» R 600 STInelt Intelligent 500LT2
Лампа накаливания1000,15высокоточная серия L

В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.

Как рассчитать пусковой ток

Пусковым называется ток, потребляемый электродвигателем при включении в электросеть. Поскольку величина пускового тока может во много раз превышать номинальную, его необходимо ограничивать, подобрав автоматические выключатели с необходимой токовой характеристикой, защищающей линию включения этого электродвигателя или их группы. Для этого и нужно рассчитать пусковой ток.Вам понадобится

Определите тип электродвигателя. Это может быть электродвигатель постоянного тока или трехфазного переменного тока. Рассчитайте номинальный токэлектродвигателя постоянного тока в амперах, используя формулу: IH=1000PH/(ηHUH), а номинальный ток электродвигателя трехфазного тока по формуле: IH=1000PH/(UHcosφH√ηH), где:Рн — номинальная мощность двигателя, квт;UH — номинальное напряжение двигателя, в;ηH — номинальный коэффициент полезного действия двигателя;cos фн — номинальный коэффициент мощности двигателя. Данные о номинальной мощности, номинальном напряжении, КПД и коэффициенте мощности возьмите из технической документации электродвигателя.

Вычислите величину пускового тока в амперах после расчета его номинальной величины. Для расчета используйте формулу:IП=IH*Кп, где IH — номинальная величина тока, а Кп — кратность постоянного тока к его номинальной величине. Просмотрите техническую документацию на электродвигатель, в ней должна быть указана кратность постоянного тока к его номинальной величине (Кп). Умножьте это число на получившуюся величину номинального тока и получите величину пускового тока в амперах. Рассчитайте ее для каждого электродвигателя, находящегося в цепи.

Подберите автоматический выключатель для защиты линии включения в зависимости от получившейся величины пускового тока по всем электродвигателям в цепи. Для выбора необходимо знать, что автоматические выключатели могут быть типа отключения В, С и Д.Выключатели с характеристикой отключения типа В подойдут для осветительных сетей общего назначения, с характеристикой отключения типа С служат для размыкания осветительных цепей и установок с умеренными пусковыми токами (двигатели и трансформаторы). Для цепей с активно-индуктивной нагрузкой, а также для защиты электродвигателей с большими пусковыми токами обычно применяются использовать выключатели с характеристикой типа D. Определив тип выключателя, подберите нужный в зависимости от получившейся величины пускового тока.

Расчет возможности пуска электродвигателя 380 В

В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного двигателя с короткозамкнутым ротором (далее двигатель) и его влияние на изменения напряжения на зажимах других электроприемников.

Читать еще:  Тестер для чайников: как пользоваться цифровым мультиметром

При включении двигателя пусковой ток может превышать номинальный в 5-7 раз, из-за чего включение крупных двигателей существенно влияет на работу присоединенных к сети приемников.

Это объясняется тем, что пусковой ток вызывает значительное увеличение потерь напряжения в сети, вследствие чего напряжение на зажимах приемников дополнительно снижается. Это отчетливо видно по лампам накаливания, когда резко снижается световой поток (мигание света). Работающие двигатели в это время замедляют ход и при некоторых условиях могут вообще остановиться.

Кроме того, может случиться, что сам пускаемый двигатель из-за сильной просадки напряжения не сможет развернуть присоединенный к нему механизм.

Режим пуска двигателя рассматривается при максимальной нагрузке линии, так как именно при таких условиях создаются наиболее неблагоприятные условия для работы присоединенных к сети приемников.

Чтобы проверить можно ли включать двигатель, нужно рассчитать напряжение на его зажимах во время пуска и напряжение на любом другом работающем двигателе, а также проверить напряжение у ламп.

Пример возможности пуска электродвигателя 380 В

Требуется проверить возможность пуска электродвигателя типа 4А250М2 У3 мощностью 90 кВт. От шин 6 кВ подстанции 2РП-1 питается подстанция с трансформаторами типа ТМ мощностью 320 кВА. От подстанции 2РП-1 до трансформаторов ТМ-6/0,4 кВ с установленным ответвлением 0%, проложен кабель марки ААБ сечением 3х70 мм2, длина линии составляет 850 м. К шинам РУ-0,4 кВ присоединен кабелем марки ААБ сечением 3х95 мм2, длиной 80 м двигатель типа 4А250М2 У3.

Рис. 1 — Однолинейная схема 0,4 кВ

В момент пуска двигателя 4А250М2 У3 работает подключенный к шинам двигатель 4А250S2 У3 мощностью 75 кВт с напряжением на зажимах 365 В. Напряжение на шинах 0,4 кВ при пуске двигателя равно Uш = 380 В.

  • Ммакс/Мн – кратность максимального момента;
  • Мп/Мн – кратность пускового момента;
  • Мн – номинальный момент двигателя;

1. Определяем длительно допустимый ток двигателя Д1:

2. Определяем пусковой ток двигателя Д1:

где:
Kпуск = 7,5 – кратность пускового тока, согласно паспорта на двигатель;

3. Определяем величину активного и индуктивного сопротивления для алюминиевого кабеля марки ААБ сечением 3х70 мм2 на напряжение 6 кВ от шин подстанции 2РП-1 до трансформатора типа ТМ 320 кВА, значения сопротивлений берем из таблицы 2.5 [Л2.с 48].

Получаем значения сопротивлений Rв = 0,447 Ом/км и Хв = 0,08 Ом/км.

Эти сопротивления необходимо привести к стороне низшего напряжения трансформатора, так как двигатель подключен к сети низшего напряжения. Из таблицы 8 [Л1, с 93] для номинального коэффициента трансформации 6/0,4 кВ и ответвления 0% находим значение n=15.

4. Определяем активное и индуктивное сопротивление кабеля по отношению к сети низшего напряжения по формуле [Л1, с 13]:

  • Rв и Хв – сопротивления сети со стороны высшего напряжения;
  • n = 6/0,4 =15 – коэффициент трансформации понижающего трансформатора.

5. Определяем сопротивление кабеля длиной 850 м от подстанции 2РП-1 до трансформатора 6/0,4 кВ:

Rс = Rн*L = 0,002*0,85 = 0,0017 Ом;

Хс = Хн*L = 0,000355*0,85 = 0,0003 Ом;

6. Определяем сопротивление трансформатора мощностью 320 кВА, 6/0,4 кВ по таблице 7 [Л1, с 92,93].

Rт = 9,7*10 -3 = 0,0097 Ом;

Хт = 25,8*10 -3 = 0,0258 Ом;

7. Определяем сопротивления линии от шин подстанции 2РП-1 до шин низшего напряжения подстанции:

Rш = Rс + Rт = 0,0017 + 0,0097 = 0,0114 Ом;

Хш = Хс + Хт = 0,0003 + 0,0258 = 0,0261 Ом;

8. Определяем сопротивление кабеля длиной 80 м марки ААБ 3х95 мм2 от шин низшего напряжения до зажимов двигателя:

где:
R = 0,329 Ом/км и Х = 0,06 Ом/км -значения активных и реактивных сопротивлений кабеля определяем по таблице 2-5 [Л2.с 48].

9. Определяем суммарное сопротивление линии от подстанции 2РП-1 до зажимов двигателя:

Rд = Rш + R1 = 0,0114 + 0,026 = 0,0374 Ом;

Хд = Хш + Х1 = 0,0261 + 0,0048 = 0,0309 Ом;

Если выполняется отношение Rд/ Хд = 0,0374/0,0309 = 1,21

где:
cosφ = 0,3 и sinφ = 0,95 средние значения коэффициентов мощности при пуске двигателя, принимаются при отсутствии технических данных, согласно [Л1. с. 16].

11. Определяем напряжение на зажимах двигателя Д1 по формуле [Л1, с 14]:

  • U*ш = Uш/Uн = 380/380 =1 – относительное напряжение на шинах распределительного пункта, во многих случаях его можно принять равным 1;
  • Iп – пусковой ток двигателя;

12. Проверяем сможет ли двигатель Д1 развернуть присоединяемый механизм нанос центробежный 1Д315-71а:

  • mп=Мпуск/Мном = 1,2 – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (выбирается по каталогу на двигатель);
  • mп.мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

12.1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д315-71а Рн.мех. = 80 кВт, к номинальной мощности двигателя 90 кВт:

Как мы видим условие выполняется и двигатель при пуске сможет развернуть присоединенный к нему центробежный насос в нормальных условиях без перегрева своих обмоток выше температуры, допустимой по нормам.

13. Определяем влияние пуска двигателя Д1 на работу присоединенного к шинам 0,4 кВ двигателя Д2 типа 4А250S2 У3, найдем величину колебания напряжения на шинах 0,4 кВ по формуле:

13.1 Определяем коэффициент Аш по формуле:

14. В момент пуска двигателя Д1 на зажимах работающего двигателя Д2 относительное напряжение согласно [Л1, с15] уменьшиться на величину колебания напряжения δU*Ш , откуда получаем:

где:
U*Д2 = UД2/Uн = 365/380 = 0,96 – относительное напряжение на зажимах двигателя Д2 до пуска двигателя Д1.

15. Проверяем устойчивость работы двигателя Д2 при пуске двигателя Д1:

  • mп= Ммакс/Мн = 2,2 – кратность максимального момента (выбирается по каталогу на двигатель);
  • mп.мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

15.1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д200-90а Рн.мех. = 72 кВт, к номинальной мощности двигателя 75 кВт:

Как мы видим, устойчивость работы двигателя Д2 типа 1Д200-90а обеспечивается с большим запасом.

1. Как проверить возможность подключения к электрической сети двигателей с короткозамкнутым ротором. Карпов Ф.Ф. 1964 г.
2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.

Пуск двигателей постоянного тока

§ 114. ПУСК ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

В начальный момент пуска в ход якорь двигателя неподви­жен и противо-э. д. с. равна нулю (E = 0). При непосредственном включении двигателя в сеть в обмотке якоря будет протекать чрез­мерно большой ток.

Поэтому непосредственное включение в сеть допускается толь­ко для двигателей очень малой мощности, у которых падение на­пряжения в якоре представляет относительно большую величину и броски тока не столь велики.

В машинах постоянного тока большой мощности падение на­пряжения в обмотке якоря при полной нагрузке составляет не­сколько процентов от номинального напряжения, т. е.

Следовательно, пусковой ток в случае вклю­чения двигателя в сеть с номинальным напря­жением во много раз превышает номинальный (Iпуск)

Большой пусковой ток является опасным как для машины, так и для приемника механи­ческой энергии, находящегося на валу двига­теля. При большом токе нагревается обмотка якоря машины и образуется интенсивное искре­ние под щетками, вследствие которого коллек­тор может выйти из строя. На валу двигателя создаются механические удары, так как при большом токе вращающий момент будет также большим.

Для ограничения пускового тока исполь­зуют пусковые реостаты, включаемые последо­вательно с якорем двигателя при пуске в ход. Пусковые реостаты представляют собой про­улочные сопротивления, рассчитываемые на кратковременный режим работы, и выполняют­ся ступенчатыми, что дает возможность изменять ток в якоре двигателя в процессе пуска его в ход.

Схема двигателя параллельного возбуждения с пусковым рео­статом показана на рис. 151. Пусковой реостат этого двигателя

имеет три зажима, обозначаемые буквами Л, Я, Ш. Зажим Л соединен с движком реостата и подключается к одному из полюсов рубильника (к линии). Зажим Я соединяется с сопротивлением реостата и подключается к зажиму якоря Я. Зажим Ш соединен с металлической шиной, помещенной на реостате (шунт). Движок реостата скользит по этой шине так, что между ними имеется не­прерывный контакт. К зажиму Ш через регулировочное сопротивление rр присоединяется обмотка возбуждения Ш1. Зажим якоря Я2 и обмотки возбуждения Ш2 соединены между собой перемычкой и подключены ко второму полюсу рубильника, включающее двигатель в сеть.

Читать еще:  Как проверить дроссель лампы дневного света

При пуске в ход включается рубильник и движок реостата переводится на контакт 1, так что последовательно с якорем соединино полное сопротивление пускового реостата ПР, которое выбирается таким, чтобы наибольший ток при пуске в ход Iмакс не превышал номинальный ток более чем в 1,7—2,5 раза, т. е.

При включении двигателя в сеть по обмотке возбуждения так­же протекает ток, образующий магнитный поток. В результате взаимодействия тока в якоре с магнитным полем полюсов создает­ся пусковой момент.

Если пусковой момент окажется больше тормозного момента а валу двигателя (Мпуск>Мт), то якорь машины придет во вра­щение. Под действием инерции скорость вращения не может пре­терпевать мгновенных изменений и число оборотов якоря будет по­степенно увеличиваться.

При увеличении скорости вращения якоря увеличивается противо-э. д. с. и ток в якоре начнет уменьшаться, что вызывает умень­шение вращающего момента двигателя.

В рабочем режиме сопротивление пускового реостата должно быть полностью выведено, так как оно рассчитано на кратковре­менный режим работы и при длительном прохождении тока выйдет из строя.

Когда ток в якоре уменьшится до небольшого значения Iмин движок пускового реостата переводится на контакт 2. При этом сопротивление пускового реостата уменьшится на одну ступень, что вызовет увеличение тока. Сопротивления всех ступеней пускового реостата выбирают так, чтобы при переводе движка реостата с од­ного контакта на другой ток в якоре изменялся от Iмин до Iмакс.

Увеличение тока в якоре вызывает увеличение вращающего мо­мента, вследствие чего скорость вращения вновь увеличивается. С увеличением скорости вращения якоря возрастает противо-э.д.с. что вызывает уменьшение тока в якоре. Когда ток в якоре дости­гает вновь небольшого значения, движок реостата переводится на контакт 3.

Таким образом, сопротивление пускового реостата постепенно (ступенями) уменьшается, пока оно полностью не будет выведено (движок реостата на контакте 5), и в рабочем режиме ток и ско­рость якоря принимают установившиеся значения, соответствую­щие тормозному моменту на валу двигателя.

Наименьший ток при пуске в ход зависит от режима работы двигателя. Если двигатель пускается при полной нагрузке, то Iмин=1,1 Iн. При пуске двигателя без нагрузки или при малых нагрузках этот ток может быть меньше номинального тока двигателя.

Число ступеней пускового реостата зависит от разности Iмакс — Iмин, причем чем меньше разность этих токов, тем больше число ступеней. Обычно пусковые реостаты имеют от 2 до 7 ступе­ней. При пуске двигателя в ход регулировочное сопротивление rр в цепи возбуждения должно быть полностью выведено, т. е. ток возбуждения должен быть наибольшим, что дает возможность уменьшить пусковой ток. Для пуска двигателя необходимо создать пусковой момент, больший тормозного момента на валу (Мпуск> Мт). Так как Мпуск=КФIп, то для уменьшения пускового тока надо увеличить магнитный поток, т. е. увеличить ток в обмотке возбуждения.

Металлическая шина пускового реостата имеет соединение с за­жимом 1. Это необходимо для того, чтобы при отключении двигателя от сети не было разрыва цепи обмотки возбуждения, имеющей значительную индуктивность.

При отключении двигателя движок пускового реостата пере­водится на холостой контакт 0 и рубильник отключается. При этом обмотка возбуждения будет замкнута на сопротивление пускового реостата и якоря, что дает возможность избежать перенапряже­ний и дугообразования.

Как посчитать пусковой ток электродвигателя

Величина пускового тока, необходимого для приведения двигателя в действие, существенно (иногда в 8-10 раз) превышает показатели тока, который подается для работы в нормальном режиме. Результатом резкого роста потребления энергии становится падение напряжения в питающих электросетях, что может повлечь за собой:

  • проблемы с другими подключенными к сети приборами;
  • более скорый износ узлов самого двигателя (этому способствует рывок при запуске).

Свести отрицательное воздействие к минимуму возможно, используя дополнительные устройства. Параметры вспомогательного оборудования определяют, исходя из значения пускового тока для данной модели двигателя.

Как посчитать пусковой ток электродвигателя

Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя). Для этого предусмотрены следующие формулы (все необходимые данные есть в техпаспорте к оборудованию):

  • 1000PH/(ηHUH) для двигателей постоянного тока;
  • 1000PH/(UHcosφH√ηH) для устройств переменного тока.

Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.

Способы уменьшения пускового тока

Проблема снижения пускового тока и более плавной подачи напряжения решается с помощью специального оборудования:

  • софтстартеров и устройств плавного пуска;
  • автоматических выключателей соответствующего типа отключения (B, D или C).

Грамотный подход к расчету значения пускового тока для электрического двигателя позволит вам получить точные результаты и подобрать наиболее эффективные средства защиты линии включения.

Компенсация пусковых токов электродвигателей.

Motor starting current compensation.

Активные фильтры эффективно компенсируют пусковые токи электродвигателей, сохраняя неизменным пусковой момент и время разгона привода.

Пусковые токи электродвигателей переменного тока (асинхронных и синхронных при асинхронном пуске) возникают в момент подачи напряжения и могут превышать в 5–7 раз номинальный ток. По мере разгона двигателя ток снижается, вплоть до достижения подсинхронной скорости. Пусковые токи перегружают источники электроэнергии, линии электропередачи, могут привести к срабатыванию защит и отключению коммутационных аппаратов.

При питании удалённых потребителей по протяжённым линиям пусковые токи вызывают глубокие провалы напряжения.

Провал напряжения на трансформаторах собственных нужд шагающего экскаватора при включении привода тяги; в результате провала напряжения главные приводы отключены защитой.

При электроснабжении от автономных источников пусковые токи создают опасность отключения генераторов.

Применение тиристорных устройств плавного пуска (УПП) лишь отчасти улучшает ситуацию, так как пусковой ток при любых условиях в 2,5 – 3 раза будет превышать номинальное значение.

Пусковой ток (черная линия) и напряжение (красная линия) при включении привода подруливающего устройства (1 МВт) с тиристорным УПП на судне.

На приведенном графике ток при пуске в 3 раза превышает номинальное значение (940 А); колебания напряжения на входе УПП – до 20% от номинального (690 В).

Особенность пускового тока электродвигателя состоит в том, что он носит в основном реактивный (индуктивный) характер.

Коэффициент мощности в цепи питания устройства плавного пуска асинхронного двигателя.

На приведенном графике коэффициент мощности в цепи питания УПП при пуске асинхронного двигателя изменяется от 0,1 до 0,8.

Активные фильтры прекрасно компенсируют реактивную мощность, и очень быстро. Это позволяет использовать их для компенсации пускового тока электродвигателей.

Фильтр подключается параллельно электродвигателю.

При работе в режиме динамической компенсации реактивной мощности фильтру нужно указать только величину коэффициента мощности, которую требуется поддерживать. В момент подачи питающего напряжения на электродвигатель активный фильтр мгновенно начинает генерировать реактивную мощность ёмкостного характера и предоставляет её для намагничивания стали электрической машины. Таким образом, обеспечивается необходимый для двигателя пусковой ток, при этом ток в сети возрастает незначительно (в зависимости от величины активной мощности при пуске).

Компенсация пускового тока асинхронного двигателя активным фильтром (осциллограмма токов).

красная линия – ток в обмотке статора асинхронного двигателя;

синяя линия – ток, потребляемый из сети.

Достоинство данного решения по сравнению с УПП в том, что двигатель разворачивается при номинальном напряжении. Это обеспечивает требуемый момент на валу и позволяет избежать затяжного пуска привода.

Предложения Инженерного центра «АРТ».

Полный комплекс работ по созданию систем компенсации пусковых токов электродвигателей на базе активных фильтров

Пусковой ток. Типы и работа. Применение и особенности

Пусковой ток – представляет ток, который необходим для запуска электрического или электротехнического устройства. Он больше номинального тока в разы, вследствие чего при подборе оборудования так важно учитывать данный параметр. В качестве примера можно привести ситуацию, когда при разгоне автомобилю нужно на порядок больше топлива, чем при движении на автомагистрали с одинаковой скоростью. Таким же образом электрический двигатель потребляет больше электрического тока при «разгоне».

Читать еще:  Как проверить аккумулятор мультиметром: советы специалиста по измерению емкости, напряжения и заряда

Подобные явления могут наблюдаться и в ином электрическом оборудовании: электрических магнитах, лампах и так далее. Пусковые процессы в устройствах определяются параметрами рабочих органов: намагниченностью катушки, накаливающейся нитью и тому подобное. Весьма часто производители ограничивают ток пуска при помощи пускового сопротивления.

Типы

Пусковой ток появляется на небольшой период времени, что в большинстве случаев составляет доли секунд. Однако по своему значению он может быть в несколько раз выше номинального значения. Этот параметр также зависит от вида применяемого оборудования. В различных приборах указанные токи могут составлять в 2-9 раз больше номинального.

Для примера можно привести следующее оборудование:
  • Погружные насосы имеют наиболее тяжелый запуск. Ток пуска здесь составляет порядка 7-9 кратного пика от номинального тока.
  • Электрическая мясорубка имеет 7 кратный перевес тока пуска от номинального тока.
  • Бетономешалка или буровой пресс имеют 3,5 кратный перевес тока пуска от номинального тока. Это же касается бойлера, стиральной машины, обогревателей радиаторного типа.
  • Холодильник имеет ток пуска, который превосходит номинальный ток в 3,33 раза.
  • Инвертор и микроволновая печь имеют ток пуска, который превосходит номинальный ток в 2 раза.
  • Циркулярная пила обычно имеет ток пуска, который превосходит номинальный ток в 1,32 раза.

В большинстве случаев производители практически не указывают данный параметр в спецификациях. Поэтому часто приходится довольствоваться ориентировочными параметрами. Измерительные приборы бытового значения выделяются инерционностью, поэтому при помощи них затруднительно измерить кратковременный всплеск тока пуска. Лучше всего уточнить параметр тока пуска у прибора непосредственно у дилера.

Работа

При запуске любого вида электрического двигателя появляется пусковой ток, который может достигать 9 кратного значения от номинального тока. Характеристика тока пуска определяется типом двигателя, присутствием нагрузки на валу двигателя, схемы подключения, скорости вращения и тому подобное.

Ток пуска появляется вследствие того, что в период запуска требуется довольно сильное магнитное поле в обмотке, чтобы перевести ротор из статичного положения и раскрутить его. То есть это ток, который требуется, чтобы запустить электрический двигатель в рабочий режим. Именно поэтому его значение на порядок превышает рабочий ток.

В период включения мотора на обмотках наблюдается малое сопротивление, вследствие чего растет ток при постоянном напряжении. Как только двигатель начинает раскручиваться, то в обмотках появляется индуктивное сопротивление, вследствие чего ток начинает стремиться к номинальному значению.

Принцип действия

Электрические двигатели обширно применяются в разных сферах промышленности. В результате этого знание параметров пусковых характеристик важно для правильного применения электрических приводов. Основными параметрами, которые влияют на ток пуска, являются момент и скольжение на валу.

При подаче тока в обмотки наблюдается рост насыщения сердечника ротора магнитным полем, появлению эдс самоиндукции. В результате растет индукционное сопротивление в цепи. При раскручивании ротора уменьшается степень скольжения. В результате ток пуска с ростом сопротивления уменьшается до рабочего параметра.

Ток пуска важен не только для электродвигателей, но и для источников питания. В частности, это касается аккумуляторных батарей. Параметры тока пуска характеризуют мощность в наивысшем значении, которую аккумулятор может выдавать в течение некоторого времени без значительной просадки напряжения. Ток пуска в большинстве случаев определяется емкостью батареи, в том числе условий климата. Так как при запуске движка летом требуется меньше энергии, чем зимой, то ток пуска при первом варианте будет несколько раз ниже, чем во втором. К примеру, для запуска современной машины аккумулятору в соответствии со стандартами необходимо выдавать ток на уровне 250-300 А минимум в течении 30 секунд.

Применение

Для правильной эксплуатации электрических приводов важно учитывать их пусковые характеристики. Если этого не учитывать и не пытаться нивелировать минусы тока пуска, то возможны неприятные последствия. Так ток пуска может негативно сказываться на другом оборудовании, которое одновременно работает с указанным электродвигателем на одной линии. При больших значениях ток пуска может приводить к падению напряжения сети и даже вызывать поломку оборудования.

Пусковые токи двигателей скважинных насосов

Пусковой ток скважинного насоса

Расчет системы питания любого погружного насоса должен включать в себя поправку на его пусковой ток. По разной документации, встречающейся в сети, пусковой ток принимают равным рабочему току насоса, увеличенному в 3-7 раз . Встречается упоминание даже 9-кратного множителя.

Давайте разберемся, от чего зависит величина пускового тока. В первую очередь, конечно — от модели двигателя. Чем больше и мощнее двигатель, тем более сильный инерционный момент его ротора , тем больше энергии нужно для его раскрутки. Поэтому расчетный множитель тока при пуске растет с 3 при полукиловатных двигателях до 4 для двигателей мощностью два киловатта.

Нагрузка на двигатель в момент его запуска тоже играет далеко не последнюю роль — свободно вращающийся ротор в насосе обеспечит при пуске меньший ток, чем нагруженный многометровым столбом воды в водопроводной магистрали.

Таблица множителей для пусковых токов насосов Grundfos SP

В таблице дана зависимость рабочего In тока в амперах и множителя для пускового тока Ist/In от мощности P2 для однофазных и трехфазных двигателей Grundfos линейки SP. Действующее время разгона — 0.1 секунды.

P2 kWtIn, A (1×230)Ist/In (1×230)In, A (3×400)Ist/In (3×400)
0.373.953.41.403.7
0.555.803.52.203.5
0.757.453.62.304.7
1.17.304.33.404.6
1.510.23.94.205.0
2.214.04.45.504,7

Пусть Вас не удивляет несоответствие потребляемого двигателем тока в таблице и мощности в киловаттах — производители двигателей для насосов дают в характеристиках мощность на валу двигателя, а она зависит от КПД и меньше потребляемой им электрической мощности. А сила тока приводится для двигателя при полной нагрузке.

Ограничение по количеству включений насоса в час связано с большим выделением тепла на обмотках двигателя пусковым током. При слишком частых включениях обмотки перегреются.

Слишком сильный перегрев обмоток приводит к потере изоляционных свойств лака, которым покрыты витки, межвитковому замыканию и выходу двигателя насоса из строя.

Побочные эффекты

При тяжелом режиме работы двигателя (большая высота напора, забит впускной фильтр, отложения в водопроводе, износ узлов насоса) величина и продолжительность пускового тока могут быть значительно больше расчетных.

Во время действия пускового тока увеличивается падение напряжения на кабеле питания насоса. Правила IES 3-64 допускают падение не более 4% от входящего напряжения.

Борьба с пусковым током

Прямой пуск от сети является самым простым и дешевым решением, но большой пусковой ток накладывает ограничения на его использование. Чтобы избавиться от этого недостатка, применяют другие способы:

1. Устройство плавного пуска — это наиболее эффективный метод уменьшения величины пускового тока. Один из его главных недостатков — большая стоимость преобразователя.

Для насосов Grundfos SQ и SQE нет ограничений по количеству запусков в час, потому что преобразователь частоты и устройство плавного пуска уже встроены в корпус двигателя.

Упрощенно работа УПП заключается в плавном наращивании напряжения на двигателе в течении 2-х секунд. За это время ротор успевает раскрутиться до необходимых оборотов, не увеличивая нагрузку на сеть.

2. Последовательное включение через трансформатор с несколькими обмотками. Для насосов обычно применяется 1 — 2 секции, которые ограничивают ток при включении, а по мере набора насосом оборотов по очереди выводятся из цепи. Первоначальное снижение напряжения происходит максимум до 50% от напряжения питания.

3. Для трехфазных двигателей насосов мощностью более 3 киловатт можно применить схему пуска с переключением со звезды на треугольник . В момент пуска двигатель включается по схеме «звезда», дающая снижение пускового тока в 3 раза, и лишь после разгона двигателя соединение переключается по схеме «треугольник».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector