Kontakt-bak.ru

Контракт Бак ЛТД
161 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обозначение счетчика электроэнергии на схеме

Условное обозначение счетчика на однолинейных схемах

Счетчик потребляемой электроэнергии – это основной элемент однолинейных схем учетно-распределительных электрических щитов квартиры или дома.

Его правильное обозначение формируется из графического изображения и буквенного кода – маркировки.

Условное графическое обозначение

Для электроизмерительных устройств разработан государственный стандарт – ГОСТ2.729-68 (ЧИТАТЬ PDF), согласно которому, электросчетчик на однолинейной схеме показывается так (см. изображение ниже):

Изображение состоит из двух основных элементов: схематического вида измерительного устройства интегрирующего типа, и вписанного в него общепринятого сокращения измеряемой величины – ватт-часов (Wh).

Видя это, любой специалист понимает, что это устройство измеряет и рассчитывает количество потребляемой энергии. Интегрирующий, значит позволяющий получить суммарное (интегральное) значение измеряемой величины за все время действия.

В современном ГОСТ Р МЭК 60617-DB-12M-2015 «Графические символы для схем (в формате базы данных)», в дополнение к стандартному, даётся и вид многотарифного электросчетчика, которые сейчас применяются гораздо чаще однотарифных:

В данном случае показан двухтарифных счетчик электрической энергии. Как вы, думаю, поняли, если используется многоставочные измерительные приборы с большим количеством тарифив, то на чертеже просто добавляются дополнительные блоки сверху, их число равно количеству тарифов.

Буквенный код

Данный код, складывается из двух знаков:

P – Прибор, измерительное оборудование (элемент однолинейной схемы)

I – Интегрирующий (код функционального назначения)

Маркировка устройтсвактивной энергии, может иметь нумерацию если их несколько – PI1, PI2 и т.д.

Трёхфазные счётчики электрической энергии: разновидности, подключение

Трёхфазный счётчик предназначен для учёта электроэнергии в сетях с напряжением 380 В, а однофазный используется в сетях на 220 В. Совсем недавно трёхфазный прибор учёта можно было встретить исключительно на предприятиях, в торговых и офисных зданиях, а сейчас такой счётчик стоит во многих квартирах, частных домах и небольших мастерских. Причина такого выбора — в появлении бытовой и производственной техники, которая нуждается в дополнительных мощностях: электрических котлов, плит и обогревателей, профессионального строительного оборудования, станков, систем нагрева бассейнов и т. п.

Основные преимущества однофазных счётчиков — их максимально простая конструкция, удобный монтаж, удобство снятия показаний. Они по-прежнему активно используются в частном секторе, высотных домах и квартирах, где потребляемая мощность не превышает 10 кВт.

Трёхфазный электрический счётчик также имеет свои достоинства:

  1. прибор может вести как трёхфазный, так и однофазный учёт в электрических сетях;
  2. фиксирует в журнале событий важные изменения в работе — скачки тока, перенапряжение по каждой фазе, колебания активной и реактивной энергии, отключение электричества и т. д. Благодаря этим записям, владельцы домов могут исключить «перекос фаз», когда к сети подключено одновременно несколько мощных электроприемников.

Многие счётчики для электрической трёхфазной сети (например, Нева МТ 313, МТ 314, МТ 315) способны работать в многотарифном режиме и существенно экономить энергоресурсы в ночное время.

Принцип работы трёхфазного счётчика электроэнергии

Для примера рассмотрим модели «Нева». Они имеют конструктивное исполнение для установки на 3 винта и DIN-рейку. Корпуса приборов сделаны из прочных негорючих материалов, предохраняют устройства от пыли, влаги, ударов и других воздействий. Незаметно вскрыть корпус и повредить механизм практически невозможно.

Чтобы не допустить вмешательство посторонних лиц, все выходы пломбируются. При покупке устройства необходимо проверить наличие всех пломб и элементов защиты, в противном случае электросчётчик может оказаться непригодным для эксплуатации.

При монтаже трёхфазных приборов учёта принимается во внимание наличие нулевого провода. Если в сети он есть — ставят четырёхпроводную модель, если нет — трёхпроводную. В большинстве случаев трёхфазные счётчики электрической энергии позволяют снимать показания как удаленно, при помощи программных интерфейсов, так и непосредственно с табло. Для обмена данными прибор имеет встроенный инфракрасный порт. Погрешность измерения соответствует классу точности 1 и 0,5.

Использовать трёхфазный счётчик электроэнергии можно как в бытовой сфере, так и на промышленных и энергетических предприятиях. Средняя наработка до отказа составляет 210–280 тысяч часов, а срок службы — около 30 лет.

Подключение трёхфазного счётчика

Прибор разрешено устанавливать в местах, защищённых от воздействия окружающей среды. Это специальные шкафы, щитки, стойки или выделенные помещения. После того как устройство распаковано, необходимо произвести его наружный осмотр, чтобы убедиться в отсутствии повреждений и наличии пломб со знаком поверки, а также клейма ОТК в техническом паспорте. Там же имеется подробная схема подключения устройства.

Схема включения счётчиков НЕВА 301, НЕВА 303, НЕВА 306 через трансформаторы тока

Схема включения счётчиков НЕВА 301 непосредственно в сеть

Схема включения счётчиков НЕВА МТЗХХ

По принципу подключения выделяют 3 типа трёхфазных счётчиков:

  • Прямого включения. Монтируются непосредственно в сеть тока с напряжением 380 В через медный или алюминиевый кабель. Пропускная мощность приборов составляет 60 кВт, а значение максимального тока — 100 А. Для подключения счётчика провода зачищают от изоляции и фиксируют к автоматическому выключателю трёхфазного типа. Фазные жилы крепятся к парным клеммам, а затем подключается нулевой проводник.
  • Полукосвенного включения. Они подходят для более мощных сетей. Подключение таких счётчиков электроэнергии к трёхфазной сети происходит при помощи трансформаторов. Расчёт расходуемой электроэнергии производится путём умножения показаний прибора на коэффициент трансформации. Возможны различные схемы подключения: с использованием испытательных клеммных коробок, по принципу «звезды»; по 10-проводной схеме путём совмещения цепей тока и напряжения.
  • Косвенного включения. Трёхфазный счётчик электроэнергии устанавливается через трансформаторы на высоковольтных линиях, когда показатели нагрузки превосходят номинальные. Чаще всего такие приборы используются на крупных предприятиях, заводах, промышленных производствах. Данный метод существенно сложнее прямого способа и требует профессиональных электротехнических знаний. Все подключения должны осуществлять специалисты, имеющие разрешение на данный вид работ. После подключения приборы пломбируют и допускают к эксплуатации надзорные инстанции.

Если устройство подключено корректно, при подаче питания загорается индикатор на лицевой панели, а на счётном механизме меняются показания. После подключения трансформаторы и прибор учёта закрывают крышками.

Трехфазный однотарифный счётчик НЕВА 306 1S0 230V 5(60) А

Трёхфазный многотарифный счётчик НЕВА МТ 314 1.0 AR E4BSR29

Трехфазный многотарифный счётчик НЕВА МТ 323 0.5 AR E4S25

Трехфазный многотарифный счётчик НЕВА МТ 324 1.0 AR E4BS29

Проверка показаний

Трёхфазные электрические счётчики измеряют расход энергии в киловатт-часах. Слева от запятой указаны целые единицы, а справа — десятые и сотые доли. Напомним: при подключении трансформатора тока показания следует умножать на коэффициент трансформации установленного прибора. Его указывают в специальном окне на крышке клеммной колодки.

Как выбрать трёхфазный счётчик

Чтобы рационально подобрать приборы учёта, необходимо сориентироваться в таких показателях, как число фаз и тарификация. Трёхфазный электронный счётчик электроэнергии может быть одно- или многотарифным, со встроенными часами.

  • Однотарифные приборы считают потребление энергии переменного тока по единой стоимости вне зависимости от времени суток.
  • Многотарифные ведут учёт электроэнергии дифференцировано по времени суток, в зависимости от установленного тарифного расписания — энергия, потребленная ночью и днём, стоит по-разному.

Целью учёта, дифференцированного по времени, является более равномерное распределение нагрузки на электрические сети, переход потребительской активности на вечерний и ночной периоды, когда большинство предприятий и организаций не работают. При этом электроэнергия для потребителей ночью стоит дешевле, чем днём. Перед выбором прибора разницу тарифов коммерческого учёта следует уточнить у поставщика электроснабжения.

Программирование устройства осуществляется по часам. Например, с 7:00 до 23:00 — 100 % стоимости электроэнергии, с 23:00 до 7:00 — 50 %. Возможна настройка на учёт электроэнергии по трёхставочному тарифу. Тарифные зоны переключаются автоматически. Установить такие приборы удобно людям, которые ведут ночной образ жизни или пользуются реле для программирования техники на включение в заданное время. Однако перед покупкой контролирующих устройств следует уточнить возможность такого перехода у компании-поставщика электроэнергии.

Кроме того, при выборе модели необходимо учитывать класс точности устройства и тип работы (индукционный, электромеханический или элёктронный трёхфазный счётчик электроэнергии). Перед покупкой лучше проконсультироваться с грамотным специалистом, который сможет правильно оценить условия эксплуатации и подберёт прибор учёта в соответствии с необходимыми техническими характеристиками.

Обозначение счетчика электроэнергии на схеме

Счетчики Меркурий 230 ART производства Инкотекс

используется для учета потребления активной и реактиной электроэнергии в трехфазных сетях переменного тока (как в 3-х проводных, так и четырех проводных) напряжением 380В и циклической частотой 50 Гц. Счетчики Меркурий очень часто устанавливаются в электрощиты, например в щиты ВРУ.

Основные особенности и характеристики электросчетчиков Меркурий 230 ART

  • класс точности измерения — 0.5S или 1.0
  • интерфейсы обмена данными: CAN, IrDA (Ик порт), PLC модем обмен данными по силовой цепи); RS-485
  • напряжение резервного питания Uрез = 5,5-9 В;
  • два телеметрических выхода для активной и реактивной энергии( DIN 43864)
  • защита от взлома, счетчик работает всегда в сторону увеличения, в независимости от подключения ;
  • самодиагностика счетчика с индикацией ошибок;
  • возможность управление нагрузкой через внешние цепи коммутации (УЗО);
  • наличие электронной пломбы
Читать еще:  Схема подключения УЗО: инструкция, методы, ошибки

Основные функции счетчика Меркурий 230 ART

  • Измерение потребляемой энергии, запись в энергонезависимую память, вывод на ЖКИ экран основных параметров потребления, хранение информации, передача данных интерфейсы связи.
  • Счетчик может быть запрограммирован по 4 тарифам на шестнадцать временных зон в течении суток. Возможность программирования каждого месяца отдельно. По умолчанию программируется на два тарифа согласно тарифного расписания региона заказчика.
  • Измерение и учёт активной электроэнергии по каждой фазе (протекающей в прямом направлении.
  • Возможен учёт потерь электроэнергии при передаче тока через линию электропередач и силовых трансформаторов.
  • Счётчик позволяет дополнительно обеспечивать учет следующих параметров потребления:
  1. Мгновенных значений полной, активной, реактивной мощности в каждой из фаз, суммарно по всем фазам и указанием вектора полной мощности;
  2. Учет действующих фазных напряжений, токов и углов между фазными напряжениями
  3. Измерение частоты измеряемой сети
  4. Коэффициентов мощности по каждой фазе и по сумме фаз.
  5. Превышении лимитов потребления

Технические характеристики счетчиков Меркурий 230ART

Класс точности при измерении активн энергии

Класс точности при измерении реактивн энергии

Номинальное напряжение (трех фазн) треугол/звезда

3х57/7В, или 3*230/400

Максим ток измерен ( с сохран класса точности)

5-7,5А; 5-60А; 10-100А

минимальный ток изм

— для IНОМ(МАКС)=5(7,5)А, UНОМ=57,7 или 230В

Обозначение электросчетчика на схеме

Понимание электрических схем и чертежей требует определённого уровня знаний. Все элементы электросети имеют условное графическое обозначение, помогающее однозначно их определить. Знание значений условных значков помогает читать чертежи любой сложности. Проблемой стало применение старых стандартов, которые в последний раз обновлялись очень давно. Порой используются произвольные обозначения элементов, однако рекомендуется применять значки из стандартов для исключения двойных трактовок.

Нормативная база

Существует с десяток разновидностей электрических схем, а число использующихся элементов исчисляется сотнями. Среди этого разнообразия неподготовленному человеку сложно обнаружить обозначение счетчика, так что соблюдение единых правил имеет важное значение. Регламентация условных знаков в сети подачи электроэнергии присутствует в перечисленных ниже стандартах:

  • ГОСТ 21.614 Изображения условные графические электрооборудования и проводок в оригинале;
  • ГОСТ 2.273-68, ГОСТ 2.279-68, ГОСТ 2-755-87 Обозначения условные графические в схемах (каждый из этих стандартов затрагивает свою область, 279 посвящен приборам измерения показателей тока, а 755 — коммутационному оборудования);
  • ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем.

В перечисленных стандартах изложены основные правила составления чертежей. Есть нормативы, добавляющие детали в изложенную информацию, их применение является редким, однако порой без них не обойтись. Изучение нормативных документов требует немалого времени, поэтому расскажем, как найти интересующие объекты в однолинейной, принципиальной и других схемах.

Однолинейная схема является упрощенной версией принципиальной, что приводит к возникновению своих особенностей чтения.

Нахождение на схеме счетчика и других элементов

При рассмотрении чертежа специалист понимает, что обозначено тем или иным знаком. Единые правила маркировки препятствуют неправильному чтению чертежа, что важно при проведении различных работ, где возможен контакт с электрической энергией. Расшифровка схем кажется сложной только в начале изучения темы, при наличии опыта найти электросчетчик и другие интересующие элементы не составит труда. Некоторые условные обозначения знакомы людям ещё со школьных уроков физики.

При рассмотрении графического обозначения некоторых элементов стоит обращать внимание на детали. По количеству лучей в розетке число входов для вилок. Сами розетки могут быть несколько видов, для каждого из которых есть свой условный значок:

  • розетка открытой установки;
  • розетка скрытой установки (утоплена в стену);
  • розетка с заземлением;
  • розетка влагозащищенная (для установки на улице и в помещениях с повышенной влажностью);
  • трехфазная розетка.

Счетчик присутствует на каждой схеме, без прибора учета не обходится ни один объект с потреблением электроэнергии. Обозначение электросчетчика на схеме найти не так сложно. Он представлен в форме прямоугольника с вертикальной полосой, отделяющей верхнюю треть фигуры, а в нижних двух трети присутствуют символы Wh. В нахождении электросчетчика помогает знание плана помещения, прибор учёта устанавливается в местах, где проще всего снять показания.

Чертеж с большим количеством элементов может вогнать неподготовленного человека в ступор. Только у ламп и других осветительных приборов насчитывается 14 основных обозначений. Если требуется замена приборов освещения, выбор оборудования осуществляется в соответствии с требованиями чертежа.

Для быстрого нахождения счетчика и других интересующих элементов условные графические значки заучиваются

В однолинейных и принципиальных схемах можно выделить несколько групп, имеющих наибольшее распространение:

  • розетки;
  • выключатели;
  • осветительные приборы;
  • радиоэлементы;
  • трансформаторы;
  • электрическое оборудование.

Графические значки являются не единственным способом обозначения элементов, буквенные значения широко используются. Для счетчика электроэнергии применяется Pl, при наличии нескольких таких элементов в сети добавляется цифра (Pl1, Pl2 и так далее). Приборы обозначаются русскими и латинскими буквами, так что наличие на чертеже символов из разных алфавитов не должно вызывать удивления.

Необходимость чтения схемы электрической сети

Специалист может быстро найти по обозначающему значку искомый элемент. Такие знания требуются в различных ситуациях, это ремонт имеющейся электрической сети, прокладка новой, установка электрооборудования. Чтобы установить новый электросчетчик, нужно найти старый и заменить его. На крупных объектах чертежи отличаются запутанностью, а разобраться в них нужно за короткое время. Быстрое изучение чертежей играет важное значение в экстренных ситуациях.

Знание условных обозначение и навыки чтения принципиальных схем или упрощенных однолинейных вариантов может потребоваться каждому человеку. Даже простая замена электропроводки заставит столкнуться со сложностями без представления об элементарных вещах. Чтение чертежа помогает обеспечить безопасность во время работ, связанных с монтажом электрических сетей. Замена счетчика является распространённой операцией, поэтому знание обозначения прибора учета в схеме так важно.

Счетчики электроэнергии-условные обозначения счетчиков

Чтобы контролировать потребление электро­энергии, устанавливают счетчики активной энер­гии, а чтобы вести учет реактивной мощности — счетчики реактивной мощности.

Все счетчики предназначены для того, чтобы учитывать расход электроэнергии в сетях, подраз­деляющихся на следующие тины:

1) двухпроводные однофазные сети;

2) трехпроводные трехфазные сети без нейтраль­ного провода;

3) четырехпроводные трехфазные сети с нейт­ральным проводом.

Условные обозначения счетчиков

Все счетчики электроэнергии различаются по своей конструкции, назначению и схемам включения. Во время их изготовления принято ставить маркировку на каждом счетчике. Например, на счетчике будет стоять надпись: СА4-И672М 880/220 В 5… 17 А, 2002.

Разберем пошагово, какая буква, что именно обозначает, что может стоять на маркировке вместо неё, и расшифровку других знаков.

1. Буква «С» характеризует тип электроустрой­ства. В данном случае «С» — это счетчик.

2. Буква «А» означает вид учитываемой энер­гии. В данном случае «А» — это активная энергия, но может также стоять и «Р», тогда речь пойдет о ре­активной энергии.

3. Цифра «4» обозначает число фазовых прово­дов в сети. В данном случае «4» — это четырех проводная сеть, но может также стоять «О» — это од­нофазный счетчик, «3» — это трех проводная сеть, «У» — это универсальный счетчик.

4. Буква «И» маркирует тип измерительной си­стемы. В данном случае «И» — это индукционная измерительная система.

6. Число «672» означает конструктивное испол­нение счетчика.

в. Буква «М» обозначает тип исполнения. В дан­ном случае «М» — это модернизованный тип, но может также стоять «П» — это прямоточный (для включения без трансформаторов тока) тип, «Т» — тип в тропическом исполнении.

7. «380/220 В 5…17 А, 2002» обозначает рабочие напряжения в проводах, максимальный ток, год изготовления. Также в конце такой записи может быть проставлен заводской номер.

Точность показаний электрических счетчиков может быть определена по классу точности. Са­мые распространенные счетчики, устанавливае­мые в квартирах, обычно имеют класс точности 2,0. Это означает, что совершенно исправный счетчик способен учитывать на 2,0 % больше или меньше энергии от своей номинальной мощности.

Исправный счетчик работает в пределах своего класса точности даже при перегрузках, во если они являются допустимыми. Бели нагрузка мала, точ­ность показаний заметно снижается, а при очень малых нагрузках отсчетный диск счетчика может вообще не вращаться.

Самые распространенные схемы включения однофазных и трехфазных электросчетчиков

В этой статье мы рассмотрим основные схемы включения однофазных и трёхфазных электросчётчиков. Сразу хочу отметить, что схемы включения индукционных и электронных электросчётчиков абсолютно идентичны.

Читать еще:  Соединения в звезду и треугольник, фазные и линейные напряжения и токи

Посадочные отверстия для крепления обоих видов электросчётчиков тоже должны быть абсолютно одинаковы, однако некоторые производители не всегда придерживаются этого требования, поэтому иногда могут возникнуть проблемы с установкой электронного электросчётчика вместо индукционного именно в плане крепления на панели.

Зажимы токовых обмоток электросчётчиков обозначаются буквами Г (генератор) и Н (нагрузка). При этом генераторный зажим соответствует началу обмотки, а нагрузочный — ее концу.

При подключении счетчика необходимо следить за тем, чтобы ток через токовые обмотки проходил от их начал к концам. Для этого провода со стороны источника питания должны подключаться к генераторным зажимам (зажимам Г) обмоток, а провода, отходящие от счетчика в сторону нагрузки, должны быть подключены к нагрузочным зажимам (зажимам Н).

Для счетчиков, включаемых с измерительными трансформаторами, должна учитываться полярность как трансформаторов тока (ТТ), так и трансформаторов напряжения (ТН). Это особенно важно для трехфазных счетчиков, имеющих сложные схемы включения, когда неправильная полярность измерительных трансформаторов не всегда сразу обнаруживается на работающем счетчике.

Если счетчик включается через трансформатор тока, то к началу токовой обмотки подключается провод от того зажима вторичной обмотки трансформаторов тока, который однополярен с выводом первичной обмотки, подключенным со стороны источника питания. При этом включении направление тока в токовой обмотке будет таким же, как и при непосредственном включении. Для трехфазных счетчиков входные зажимы цепей напряжения, однополярные с генераторными зажимами токовых обмоток, обозначаются цифрами 1, 2, 3. Тем самым определяется заданный порядок следования фаз 1-2-3 при подключении счетчиков.

Основные схемы включения однофазных счетчиков

На рисунке 1 изображены принципиальные схемы включения однофазного счетчика активной энергии. Первая схема (а) – непосредственного включения – является наиболее распространенной. Иногда, однофазный электросчётчик включают и полукосвенно – с использованием трансформатора тока (б).

Рисунок 1. Схемы включения однофазного счетчика активной энергии: а — при непосредственном включении; б — при полукосвенном включении. Далее рассмотрим схемы включения трёхфазных электросчётчиков.

Самыми распространёнными являются схемы непосредственного (рис.2) и полукосвенного (рис.3) включения в четырехпроводную сеть:

Рисунок 2. Схема непосредственного включения трёхфазного счетчика активной энергии

Рисунок 3. Схема полукосвенного включения трёхфазного счетчика активной энергии.

При полукосвенном включении используют трансформаторы тока. Выбор трансформаторов тока проводят исходя из потребляемой мощности. Промышленностью выпускаются трансформаторы тока с различным коэффициентом трансформации – 50/5, 100/5 …. 400/5 и т.д.

Подробнее о подключении счетчиков в быту смотрите здесь: Как правильно подключить электрический счетчик

Основные схемы включения трёхфазных электросчётчиков

Кроме полукосвенной схемы, часто применяется и схема косвенного включения трёхфазных электросчётчиков. При этой схеме используют не только трансформаторы тока, но и трансформаторы напряжения.

На рисунке 4 показана схема включения с тремя однофазными трансформаторами напряжения в трёхпроводную сеть, первичные и вторичные обмотки которых соединены в звезду. При этом общая точка вторичных обмоток в целях безопасности заземляется. Это же относится и к вторичным обмоткам трансформаторов тока.

Здесь необходимо обратить внимание на наличие обязательной связи нулевого проводника сети с нулевым зажимом счетчика, т.к. отсутствие такой связи может вызывать дополнительную погрешность при учете энергии в сетях с несимметрией напряжений.

Рисунок 4. Схема косвенного включения трёхфазного счетчика активной энергии в трёхпроводную сеть

Помимо трёхэлементных трёхфазных электросчётчиков, используют и двухэлементные. Принципиальные схемы включения трехфазного двухэлементного счетчика активной энергии типа САЗ (САЗУ) приведены на рисунке 5.

Здесь особо отметим, что к зажиму с цифрой 2 обязательно подключается средняя фаза, т.е. та фаза, ток которой к счетчику не подводится. При включении счетчика с трансформаторами напряжения зажим этой фазы заземляется.

На схеме заземлены зажимы со стороны источника питания (т.е. зажимы И1 трансформаторов тока), но можно было бы заземлять зажимы и со стороны нагрузки.

Счетчики типа САЗ применяются главным образом с измерительными трансформаторами (НТМИ), и поэтому приведенная схема является основной при учете активной энергии в электрических сетях 6 кВ и выше.

Рисунок 5. Схема полукосвенного включения трёхфазного двухэлементного счетчика активной энергии в трёхпроводную сеть

Необходимо отметить один момент, который я упустил раньше. Рабочее напряжение индукционных электросчётчиков, включаемых по схеме непосредственного и полукосвенного включения, равно 220/380 В. В схемах косвенного включения, т.е. с трансформаторами напряжения, применяют электросчётчики на рабочее напряжение 100 В. Некоторые электронные электросчётчики имеют диапазон входного напряжения 100-400 В, что теоретически позволяет использовать их в схемах с любым типом включения.

При монтаже учётов электроэнергии по схеме полукосвенного или косвенного включения, очень большое значение имеет правильное чередование фаз. Для определения чередования фаз применяют различные приборы, например Е-117 «Фаза-Н».

Схемы включения счетчиков реактивной энергии

Довольно часто, вместе с индукционными электросчётчиками активной энергии, применяют электросчётчики реактивной энергии.

На рисунке 6 приведены схемы полукосвснного включения счетчиков в четырехпроводную сеть (380/220 В). Эта схема требует для монтажа меньшего количества провода или контрольного кабеля. При ее сборке значительно уменьшается риск неправильного включения счетчиков, так как исключается несовпадение фаз (А, В, С) тока и напряжения.

Проверить правильность схемы можно упрощенными способами без снятия векторной диаграммы. Для этого достаточным является измерение фазных напряжений, определение порядка следования фаз и проверка правильности включения токовых цепей с помощью поочередного вывода двух элементов счетчиков из работы и фиксацией при этом правильного вращения диска.

Рисунок 6. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с совмещенными цепями тока и напряжения.

Недостаток схемы заключается в том, что проверка правильности включения токовых цепей вызывает необходимость трижды отключать потребителей и принимать особые меры по технике безопасности при производстве работ, так как вторичные цепи трансформаторов тока находятся под потенциалами фаз первичной сети.

Другим серьезным недостатком рассматриваемой схемы является то, что необходимо зануление или заземления вторичных обмоток измерительных трансформаторов.

В отличие от предыдущей схема на рисунке 7 имеет раздельные цепи тока и напряжения, поэтому она позволяет производить проверку правильности включения счетчиков и их замену без отключения потребителей, так как в этой схеме цепи напряжения могут быть отсоединены. Кроме этого, в ней соблюдены требования ПУЭ к занулению и заземлению вторичных обмоток трансформаторов тока.

Рисунок 7. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с раздельными цепями тока и напряжения.

И в заключение рассмотрим схему косвенного включения двухэлементных электросчётчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ. Принципиальная схема данного включения приведена на рисунке 8.

Рисунок 8. Схема косвенного включения двухэлементных счетчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ.

В данной схеме в качестве счетчика реактивной энергии принят двухэлементный электросчетчик с разделенными последовательными обмотками. Так как в средней фазе сети отсутствует трансформатор тока, то вместо тока Ib к соответствующим токовым обмоткам этого счетчика подведена геометрическая сумма токов Ia +Ic равная — Id.

На рисунке была показана схема включения с использованием трехфазного трансформатора напряжения типа НТМИ. На практике может применяться трехфазный трансформатор напряжения и с заземлением вторичной обмотки фазы В. Вместо трехфазного трансформатора напряжения также могут применяться два однофазных трансформатора напряжения, включенных по схеме открытого треугольника.

Как правило, схема включения счетчика обычно нанесена на крышке клеммной коробки. Однако, в условиях эксплуатации, крышка может оказаться снятой со счетчика другого типа. Поэтому необходимо всегда убедиться в достоверности схемы путем ее сверки с типовой схемой и с разметкой зажимов.

Монтаж цепей напряжения электросчётчика полукосвенного и косвенного включения должен выполняться в соответствии с ПУЭ — медным проводом сечением не менее 1,5 мм, а токовых цепей – сечением не менее 2,5 мм.

При монтаже электросчётчиков непосредственного включения, монтаж должен быть выполнен проводом, рассчитанным на соответствующий ток.

На этом обзор схем включения электросчётчиков будем считать оконченным. Разумеется, нами были рассмотрены далеко не все существующие схемы, а только те, которые наиболее часто используются на практике.

Измерение электрической энергии

Электротехническое изделие в соответствии со своим назначением потребляет (вырабатывает) активную энергию, расходуемую на совершение полезной работы. При постоянстве напряжения, тока и коэффициента мощности количество потребленной (выработанной) энергии определяется соотношением Wp = UItcos φ = Pt

где P=UIcos φ — активная мощность изделия; t — продолжительность работы.

Читать еще:  Схема подключения реле напряжения

Единицей энергии в СИ служит джоуль (Дж). В практике еще находит применение внесистемная единица измерения Ватт х час (Вт х ч). Соотношение между этими единицами следующее: 1 Вт-ч=3,6 кДж или 1 Вт-с=1 Дж.

В цепях периодического тока количество израсходованной или выработанной энергии измеряют индукционными или электронными э лектрическими счетчиками.

Конструктивно индукционный счетчик представляет собой микроэлектродвигатель, каждому обороту ротора которого соответствует определенное количество электрической энергии. Соотношение между показаниями счетчика и числом оборотов, совершенных двигателем, называют передаточным числом и указывают на щитке: 1 кВт х ч = N оборотов диска. По передаточному числу определяют постоянную счетчика C=1/N, кВт х ч/об; C = 1000 — 3600/N Вт х с/об.

В СИ постоянная счетчика выражается в джоулях, так как число оборотов — безразмерная величина. Счетчики активной энергии выпускают как для однофазных, так и для трех- и четырехпроводных трехфазных сетей.

Рис. 1 . Схема включения счетчиков в однофазную сеть: а — непосредственное, б — черед измерительные трансформаторы

Однофазный счетчик (рис. 1 , а) электрической энергии имеет две обмотки: токовую и напряжения и может быть включен в сеть по схемам, подобным схемам включения однофазных ваттметров. Для исключения ошибок при включении счетчика, а следовательно, и ошибок учета энергии рекомендуется во всех случаях использовать схему включения счетчика, указанную на крышке, закрывающей его выводы.

Необходимо отметить, что при изменении направления тока в одной из обмоток счетчика диск начинает вращаться в другую сторону. Поэтому токовую обмотку прибора и обмотку напряжения следует включать так, чтобы при потреблении энергии приемником диск счетчика вращался в направлении, указанном стрелкой.

Токовый вывод, обозначенный буквой Г, подключают всегда со стороны питания, а к нагрузке подключают второй вывод токовой цепи, обозначенный буквой И. Кроме того, вывод обмотки напряжения, однополярный с выводом Г токовой обмотки, подключают также со стороны питания.

При включении счетчиков через измерительные трансформа т оры тока необходимо одновременно учитывать полярность обмоток трансформаторов тока и трансформаторов напряжения (рис. 1, б) .

Счетчики выпускают как для применения с любыми трансформаторами тока и трансформаторами напряжения — универсальные, в условное обозначение которых добавлена буква У, так и для применения с трансформаторами, номинальные коэффициенты трансформации которых указаны на их щитке.

Пример 1 . Универсальный счетчик, имеющий параметры Uп=100 В и I = 5 А, используют с трансформатором тока, имеющим первичный ток 400 А и вторичный 5 А, и трансформатором напряжения с первичным напряжением 3000 В и вторичным 100 В.

Определить постоянную схемы, на которую надо умножить показания счетчика для нахождения количества израсходованной энергии.

Постоянную схемы находят как произведение коэффициента трансформации трансформатора тока на коэффициент трансформации трансформатора напряжения: D = kti х ktu = ( 400 х 3000 ) / ( 5 х 100 ) = 2400.

Подобно ваттметрам счетчики можно использовать с разными измерительными преобразователями, но в этом случае необходимо сделать перерасчет показаний.

Пример 2 . Счетчик, предназначенный для использования с трансформатором тока имеющим коэффициент трансформации kti1 = 400/5, и трансформатором напряжения с коэффициентом трансформации ktu1 = 6000/100, используется в схеме измерения энергии с другими трансформаторами, имеющими такие коэффициенты трансформации: kti2 = 100/5 и ktu2 =35000/100. Определить постоянную схемы, на которую надо умножить показания счетчика.

Постоянная схемы D = (kti2 х ktu2) / (kti1 х ktu1) = ( 100 х 35 000 ) / (400 х 6000) = 35/24 = 1 , 4583.

Трехфазные счетчики, предназначенные для измерения энергии в трехпроводных сетях, конструктивно представляют собой два объединенных однофазных счетчика (рис 2 , а, б). Они имеют две токовые обмотки и две обмотки напряжения. Обычно такие счетчики называют двухэлементными.

Все сказанное выше о необходимости соблюдения полярности обмоток прибора и обмоток, используемых вместе с ним измерительных трансформаторов в схемах включения однофазных счетчиков, в полной мере относится и к схемам включения, трехфазных счетчиков.

Для отличия элементов друг от друга в трехфазных счетчиках выводы дополнительно обозначены цифрами, одновременно указывающими и порядок следования фаз питающей сети, подключаемых к выводам. Таким образом, к выводам, отмеченным цифрами 1 , 2 , 3 подключают фазу L1 (А), к выводам 4, 5 — фазу L2 (В) и к выводам 7, 8, 9 — фазу L3 (С).

Определение показаний счетчика, включаемого с трансформаторами, рассмотрено в примерах 1 и 2 и полностью применимо к трехфазным счетчикам. Отм е тим, что цифра 3, стоящая на щитке счетчика перед коэффициентом трансформации как множитель, говорит только о необходимости применения трех трансформаторов и поэтому при определении постоянной схемы не учитывается.

Пример 3 . Определить постоянную схемы для универсального трехфазного счетчика , используемого с трансформаторами тока и напряжения, 3 х 800 А/5 и 3 х 15000 В / 100 (форма записи специально повторяет запись на щитке).

Определяем постоянную схемы: D = kti х ktu = ( 80 0 х 1500 ) /(5-100) =24000

Рис. 2. Схемы включения трехфазных счетчиков в трехпроводную сеть: а — непосредственное для измерения активной (прибор Р 11 ) и реактивной (прибор P 1 2) энергии, б — через трансформаторы тока для измерения активной энергии

Известно, что при изменении коэффициента мощности при разных токах I может быть получено одно и то же значение активной мощности UIcos φ , а следовательно, и активной составляющей тока Ia = Icos φ .

Увеличение коэффициента мощности приводит к уменьшению тока I при заданной активной мощности и поэтому улучшает использование линий передач и другого оборудования. С уменьшением коэффициента мощности при постоянной активной мощности требуется увеличить ток I, потребляемый изделием, что приводит к возрастанию потерь в линии передач и другом оборудовании.

Поэтому изделия с низким коэффициентом мощности потребляют от источника дополнительную энергию Δ Wp, необходимую для покрытия потерь, соответствующих возросшему значению тока. Эта дополнительная энергия пропорциональна реактивной мощности изделия и при условии постоянства во времени значений тока, напряжения и коэффициента мощности может быть найдена по соотношению Δ Wp = kWq = kUIsin φ , где Wq = UIsin φ — реактивная энергия (условное понятие).

Пропорциональность между реактивной энергией электротехнического изделия и энергией, вырабатываемой дополнительно на станции, сохраняется и при изменении напряжения, тока и коэффициента мощности во времени. На практике реактивную энергию измеряют внесистемной единицей (вар х ч и производными от нее — квар х ч, Мвар х ч и др.) с помощью специальных счетчиков, которые конструктивно полностью подобны счетчикам активной энергии и отличаются только схемами включения обмоток (см. рис. 2 , а, прибор P 12 ).

Все расчеты, связанные с определением измеренной счетчиками реактивной энергии, аналогичны рассмотренным выше расчетам для счетчиков активной энергии.

Следует обратить внимание на то, что энергия, расходуемая в обмотке напряжения (см. рис. 1 , 2), счетчиком не учитывается, и все затраты несет производитель электроэнергии, а энергия, потребляемая токовой цепью прибора, учитывается счетчиком т. е. затраты в этом случае относят на счет потребителя.

Помимо энергии с помощью счетчиков электрической энергии можно определить и некоторые другие характеристики нагрузки. Например, по показаниям счетчиков реактивной и активной энергии можно определить значение средневзвешенного tg φ нагрузки: tg φ = Wq/Wp , г д е W з — количество энергии, учтенное счетчиком активной энергии, за данный промежуток времени , Wq — то же, но учтенное счетчиком реактивной энергии за тот же период времени. Зная tg φ , по тригонометрическим таблицам находят cos φ .

Если оба счетчика имеют одинаковые передаточное число и постоянную схемы D, можно найти tg φ нагрузки для данного момента. Для этого за один и тот же промежуток времени t= (30 — 60) с одновременно отсчитывают число оборотов nq счетчика реактивной энергии и число оборотов np счетчика активной энергии. Тогда tg φ = nq/np.

При достаточно постоянной нагрузке можно по показаниям счетчика активной энергии определить ее активную мощность.

Пример 4 . Во вторичной обмотке трансформатора включен счетчик активной, энергии с передаточным числом 1 кВт х ч = 2500 об. Обмотки счетчика включены через трансформаторы тока с kti = 100/5 и напряжения с ktu = 400/100. За 50 с диск сделал 15 оборотов. Определить активную мощность.

Постоянная схема D = ( 400 х 100 ) /(5 х 100 ) = 80. Учитывая передаточное число, постоянная счетчика С = 3600/N = 3600/2500= 1,44 кВт х с/об. С учетом постоянной схемы C’ = CD= 1,44 х 80= 1 1 5,2 кВт х с/об.

Так и м образом, n оборотов д иска соответствуют расходу энергии Wp = С’n= 115,2 [ 15= 1728 кВт х с. Следовательно, мощность нагрузки Р = Wp/t = 17,28/50 = 34,56 кВт.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector