Kontakt-bak.ru

Контракт Бак ЛТД
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема пуска двигателя

Схема пуска двигателя

Схема состоит:
— Автоматический выключатель;
— Три магнитных пускателя КМ, КМ1, КМ2;
— Кнопка пуск — стоп;
— Трансформаторы тока ТТ1, ТТ2;
— Токовое реле РТ;
— Реле времени РВ;
— БКМ, БКМ1, БКМ2– блок контакт своего пускателя.

Пояснение схемы:

— Включаем автоматический выключатель АВ, подаём напряжение на силовые контакты магнитного пускателя КМ и в схему управления двигателем.

— При нажатии кнопки Пуск, включается магнитный пускатель КМ и КМ2, двигатель включается по схеме звезда, возникает пусковой ток, при этом срабатывает токовое реле РТ, которое стоит во вторичной цепи трансформаторов тока.

— Контакт токового реле РТ шунтирует контакт реле времени РВ и продолжает работу магнитного пускателя КМ2 по схеме звезда, до момента снижения тока в силовой цепи двигателя. Ток снижается, ниже уставки, токовое реле РТ возвращается в исходное положение, контакт РТ размыкается и магнитный пускатель КМ2 отключается, и своим нормально замкнутым блок контактом БКМ2 через нормально открытый контакт реле времени РВ включает магнитный пускатель КМ1, пускатель КМ1 включается на само подхват своим блок контактом БКМ1 и включает двигатель по схеме треугольник.

— На нормально закрытых блок контактах БКМ1 и БКМ2 магнитных пускателей собрана блокировка от одновременного включения магнитных пускателей КМ1 и КМ2.

— Реле времени РВ необходимо в схеме для подготовки к включению магнитных пускателей КМ1 и КМ2, вначале включается магнитный пускатель КМ2 по схеме звезда и контактом БКМ2 включает катушку реле времени РВ, реле срабатывает и контакты перекидываются, нормально закрыты контакт размыкается, а нормально открыты замыкается и подготавливает цепь включения магнитного пускателя КМ1, который сработает при замыкании нормально закрытого блок контакта БКМ2.

— Реле времени с замедлением на возврат контактов в исходное положение при отключении реле, данное свойство необходимо для ожидания срабатывания блок контакта БКМ2 и включение магнитного пускателя КМ1.

— Отключение двигателя производится кнопкой стоп, снимаем питание со схемы управления двигателем и схема возвращается в исходное состояние.

Просмотр и ввод комментариев к статье

Схема пуска двигателя

Схема пуска и реверсирования трёхфазного асинхронного электродвигателя с короткозамкнутым ротором

Рис. 43. Схема пуска и реверсирования трёхфазного асинхронного электродвигателя с короткозамкнутым ротором.

Схема предназначена для пуска, реверсирования (изменения направления вращения) и остановки трёхфазных асинхронных двигателей с короткозамкнутым ротором, а также их защиты от коротких замыканий и перегрузок. Схема питается от трёхфазной пятипроводной системы низкого напряжения 400/230V.

Схема состоит из двух основных частей: первичной или силовой и вторичной или схемы управления. В первичную часть входят трёхполюсный автоматический выключатель F1, силовые контакты контакторов KM1 и KM2 и двигатель M. Все остальные элементы входят во вторичную часть. Первичная часть питается линейным напряжением 400V, вторичная часть питается фазным напряжением 230V. Для соединения элементов используются медные провода PL-1,5 (ПВХ изоляция, сечение 1,5 mm²).

Для приведения схемы в рабочее состояние включаем трёхполюсный автоматический выключатель F1, после этого включаем однополюсный выключатель F2.

Для пуска двигателя следует нажать на кнопку с самовозвратом S2. Ток проходит через обмотку контактора KM1, его силовые и вспомогательный контакты KM1 замыкаются (в цепи обмотки KM2 — размыкается) и двигатель начинает вращаться – например, по часовой стрелке).

Для реверсирования двигателя сначала следует нажать на кнопку S1. При этом обмотка контактора KM1 теряет питание, силовые и вспомогательный контакты KM1 разомкнутся и двигатель остановится. После нажатия на кнопку S3 ток проходит через обмотку контактора KM2, его силовые и вспомогательный контакты замыкаются (в цепи обмотки KM1 — размыкается) и двигатель начинает вращаться в обратном направлении – например, против часовой стрелки. Для “сохранения” цепи тока, образованной нажатием на S2 или S3, предусмотрены вспомогательные контакты KM1 и KM2 (удерживающие- или контакты самопитания). При отсутствии вспомогательных контактов после возврата S2 или S3 произойдёт остановка двигателя.

Для окончательной остановки двигателя следует нажать на кнопку с самовозвратом S1, снабжённую размыкающим контактом, вследствие чего размыкаются все цепи схемы управления, контактор KM1 или KM2 выключается, его силовые и вспомогательный контакты размыкаются и двигатель останавливается.

Эта схема снабжена нулевой защитой. Это означает, что в случае перерыва электроснабжения схема управления отключается и двигатель останавливается. Для повторного пуска двигателя следует снова нажать на S2 или S3. Самопроизвольный повторный пуск двигателя невозможен.

В случае короткого замыкания или перегрузки во вторичной части срабатывает однополюсный автоматический выключатель F2, который выключает схему управления. В случае короткого замыкания или перегрузки в первичной части срабатывает трёхполюсный автоматический выключатель F1, который выключает первичную часть.

Выбор схемы пуска асинхронных и синхронных двигателей

Выбор простой и надежной схемы пуска имеет большое значение для эксплуатации двигателей и синхронных компенсаторов. Наиболее распространенной в настоящее время является простейшая и вместе с тем наиболее надежная схема прямого пуска от полного напряжения сети, исключение составляют двигатели с очень тяжелыми условиями пуска или очень мощные двигатели и компенсаторы, вызывающие при пуске недопустимые снижения напряжения в сети.

В случаях, когда прямой пуск неприемлем, напряжение, подводимое к двигателю при пуске, снижается включением в цепь статора реактора или, в редких случаях, автотрансформатора. Конструкции всех асинхронных и синхронных двигателей предусматривают возможность асинхронного пуска. С этой целью у синхронных двигателей с частотой вращения до 1500 об/ мин на роторе в явно выраженных полюсах расположена пусковая обмотка в виде замкнутых стержней. Возможность асинхронного пуска турбодвигателей с частотой вращения 3000 об/мин обеспечивается прежде всего токами в бочке неявнополюсного ротора, а также медными клиньями, заложенными в пазы.

Выбор пускового реактора для синхронного двигателя и компенсатора принципиально не отличается от выбора реактора для асинхронного двигателя. Для синхронных двигателей большой мощности в ряде случаев целесообразно применение питания от отдельных трансформаторов (блок-трансформаторов) с мощностью блок-трансформатора, в большинстве случаев соответствующей мощности установленного двигателя. В этом случае за счет отказа от выключателя на стороне двигателя установка оказывается весьма простой. Только при частых тяжелых пусках может потребоваться увеличение мощности трансформатора по условию его нагрева.

Читать еще:  Схема подключения стабилизатора

Реакторный пуск и пуск при работе по схеме блока двигатель-трансформатор имеет неоспоримые преимущества перед пуском через автотрансформатор. Например, напряжение на двигателе или компенсаторе при пуске через постоянно включенные реактор и трансформатор по мере снижения пускового тока плавно возрастает, и в конце пуска это напряжение незначительно отличается от номинального.

Рис. Схемы прямого пуска синхронных электродвигателей с электромашинными возбудителями постоянного тока:
а — обмотка ротора глухо подключена к якорю возбудителя;
б — включена на разрядный резистор:
в — включена на якорь возбудителя через разрядный резистор.

Поэтому при реакторном пуске шунтирование реактора происходит практически без толчка (см., например, рис., б) в отличие от автотрансформаторного пуска, где приходится принимать специальные меры, усложняющие схему пуска, для ограничения толчка тока при переключении от пускового напряжения на полное напряжение сети.

Требования некоторых трансформаторных заводов об ограничении пускового тока, приводящие к завышению мощности блок-трансформатора, исходя из необходимости ограничения динамических усилий на обмотке, следует считать неоправданными. Согласно ГОСТ обмотка трансформатора должна выдерживать без повреждения токи короткого замыкания на выводах любой из его обмоток при номинальном напряжении на другой. Эти токи заведомо существенно больше токов при пуске двигателя, соизмеримого по мощности с трансформатором. Динамические усилия в трансформаторе, пропорциональные квадрату тока, получаются соответственно значительно меньшими гарантированных.

Практика применения схемы блоков трансформатор-двигатель вполне себя оправдала. При применении электромашинной системы возбуждения, как можно заключить из рассматриваемых выше процессов в этих системах при пуске двигателя (компенсатора), предпочтение следует отдавать схемам глухого подключения возбудителя к ротору двигателя (компенсатора), если это допустимо по условиям пуска. Сопротивление в цепи возбуждения возбудителя при этом должно быть подобрано таким образом, чтобы при номинальной угловой скорости напряжение на двигателе (компенсаторе), отключенном от сети, было равно напряжению сети или несколько больше.

Пуск двигателя (компенсатора) происходит следующим образом: включается главный выключатель, двигатель (компенсатор) разворачивается, возбуждается и втягивается в синхронизм плавно, без толчков и без вмешательства персонала или каких-либо элементов автоматики, дающих команду на возбуждение машины. Эта схема применима для двигателей и компенсаторов, как имеющих возбудитель на одном валу, так и питающихся от отдельно стоящего двигатель-генератора. В последнем случае пуск агрегата возбуждения должен осуществляться одновременно с пуском двигателя или компенсатора замыканием блок-контактов выключателя основного двигателя.

При прямом включении в сеть обмотки статора и глухоподключенном возбудителе схема пуска синхронной машины (рис. а) также проста, как и схема пуска асинхронного двигателя с короткозамкнутым ротором. Проведенные испытания и накопленный опыт эксплуатации вместе с тем показывают, что область применения схемы пуска синхронных двигателей с постоянно подключенным возбудителем ограничивается практически двигателями относительно небольшой мощности, — как правило, не свыше 2000 кВт. Схема непригодна для двигателей, запускающихся с нагрузкой выше 0,4-0,6 номинальной мощности, из-за провала в кривой асинхронного момента в области малых скольжений и малоэффективна для двигателей, у которых контактор возбуждения оказывается необходимым для гашения поля или осуществления схемы ресинхронизации. Например, проведенные исследования показали неприемлимость данной схемы на синхронных двигателях СДМ-20-49-60, 2000 кВт, применяемых для привода шаровых углеразмольных мельниц Ш-50 и Ш-50А на энергоблоках 300 МВт мощных тепловых электростанций. Кривая вращающего момента при пуске этих мельниц имеет резко выраженный пульсирующий характер, в результате чего на вал воздействует знакопеременная нагрузка.

При включении двигателя с глухоподключенным к ротору возбудителем кривая вращающего момента имеет особо неблагоприятный характер, поэтому успешный пуск таких агрегатов оказался возможным только по схеме с включением обмотки ротора на якорь возбудителя через разрядный резистор (рис. в). При прямом пуске механические усилия в лобовых частях обмотки статора асинхронных и синхронных двигателей и компенсаторов возрастают, но, как правило, за счет падения напряжения в сети оказываются меньше тех усилий, которые получаются при близких коротких замыканиях.

Большинство электродвигателей допустимо переводить на прямой пуск без дополнительного усиления креплений лобовых частей обмоток. Однако в отдельных случаях (большие кратности пускового тока при малых снижениях напряжения сети, слабое закрепление лобовых частей обмоток статора) такое усиление может потребоваться. С этой целью можно рекомендовать установку дополнительных дистанционных распорок и взаимную перевязку соседних лобовых частей в местах ранее установленных и дополнительных распорок.

Из практики эксплуатации известны многочисленные случаи применения прямого пуска для асинхронных двигателей с фазным ротором, переделанных на короткозамкнутые или пускаемые без реостата в цепи ротора, а также для двигателей, ранее пускавшихся от автотрансформатора или через реактор. Опыт подтвердил целесообразность перевода этих двигателей на прямой пуск. Пуск без нагрузки двухскоростных электродвигателей следует всегда производить на меньшей угловой скорости. Если необходима работа на большей угловой скорости, то следует после пуска двигателя на меньшей угловой скорости переключить вращающийся двигатель на большую угловую скорость. При таком пуске суммарные потери за время пуска будут иметь минимальное значение.

Электрические схемы управления двигателем при помощи электромагнитных пускателей

Нереверсивный пуск асинхронного двигателя с короткозамкнутым ротором

Схема приведена на рисунке 1. Для работы сети необходимо включить рубильник (Q). При нажатии кнопки «пуск» (SB1) катушка контактора (KM) получает питание и замыкает главные контакты в силовой цепи, тем самым происходит подключение двигателя к сети. Одновременно замыкается блок-контакт (KM) цепи управления, которые шунтирует кнопку пуск (SB1).

Для защиты двигателя от перегрузок и от потери фазы применяют тепловые реле (KK1, KK2), которые включаются непосредственно в силовую цепь двигателя.

Если температура обмотки двигателя превысит допустимые значения, то сработает тепловое реле и разомкнет свои контакты в цепи управления (KK1, KK2), тем самым обесточит катушку контактора (KM) и двигатель остановиться.

Для отключения необходимо нажать кнопку «стоп» (SB2).

Для защиты двигателя от токов короткого замыкания служат плавкие предохранители (FU).

Реверсивный пуск асинхронного двигателя с короткозамкнутым ротором

Такая схема запуска приведена на рис. 2.

Пуск двигателя начинается с включения рубильника (Q). При нажатии кнопки «вперед» (SB1) образуется цепь тока, катушки контактора (KM1). Замыкаются силовые контакты (KM) и шунтирующий блок-контакт, а контакт (KM1) в цепи контактора (KM2) размыкается.

Читать еще:  Схема подключения магнитного пускателя

При нажатии кнопки «назад» (SB3) контактор (KM1) разомкнется и двигатель остановится. Контакт (KM1) в цепи катушки (KM2) замыкается, следовательно, образуется цепь включения контактора (KM2), который замыкает свои силовые контакты. Двигатель резко тормозит и по достижении скольжения равного единице (S=1) останавливается и ротор начинает вращаться в обратную сторону, то есть происходит реверс двигателя. Размыкающие контакты (KM1, KM2), которые введены в цепь разноименных катушек контакторов, выполняют защиту от одновременного включения обоих контакторов, то есть осуществляют блокировку.

Для зажиты двигателя от токов короткого замыкания установлены плавкие предохранители (FU), для защиты от перегрузок – тепловое реле (KK1, KK2).

Плавный пуск двигателя: схема устройства

Устройства плавного пуска двигателя (софтстартер, мягкий или плавный пускатель) – это прибор, позволяющий добиться плавного разгона или плавной остановки электродвигателя, скоординировать его крутящий момент и момент нагрузки, а также понизить уровень пускового тока, что способствует экономии электроэнергии.

Устройство плавного пуска двигателя также уменьшает вероятность перегрева электродвигателей, способствует повышению их срока службы, защищает от рывков в механической части привода двигателя.

Выделяют УПП двух типов:

  • С открытым управлением – подача напряжения пуска происходит с задержкой во времени, вне зависимости от тока или скорости двигателя.
  • С контролем замкнутого контура – контроль осуществляется над любыми параметрами выходного сигнала двигателя, например, над текущим током или скоростью.

Устройство плавного пуска серии «Спринт» производства «РУСЭЛТ»

Принцип работы

Стандартная схема УПП – это набор контактов. Их положение меняется, соответственно, изменяется и параметр входного напряжения. При этом сердечники устройств часто импульсного типа. Электрические катушки расположены за контактами.

Работает УПП следующим образом. Управление напряжением, подаваемым на двигатель, с целью его плавного разгона или остановки, происходит путем изменения угла открытия тиристоров. В самом устройстве установлено 2 встречно-включенных тиристора для положительного и отрицательного полупериодов.

Сила тока в оставшейся без управления третьей фазе формируется из токов фаз под управлением. После настройки координация крутящего момента при пуске доводится до предельно низкой величины пускового тока.

Показатель тока самого двигателя снижается параллельно показателю пускового напряжения на пуске. Величина пускового момента снижается в квадратичном отношении к напряжению. Уровень напряжения контролирует пусковой ток и крутящий момент двигателя при его запуске или остановке.

В устройстве плавного пуска есть байпасные контакты, осуществляющие шунтирование тиристорных выпрямителей. Это понижает тепловые потери в них, а также снижает нагрев всего устройства, что обеспечивает его безопасную эксплуатацию. Сами контакты защищены от повреждений из-за тех или иных рабочих сбоев встроенной электронной дугогасительной системой.

Рекомендации по выбору УПП

При подборе устройства в первую очередь нужно исходить из технических характеристик используемого электродвигателя и интенсивности нагрузки. В зависимости от этого выделяют следующие пусковые характеристики:

  • Легкий режим – значение пускового тока не больше 4хIном
  • Тяжелый режим – нагрузка с большим показателем инерционного момента и с необходимым значением пускового тока не менее 4,5хIном (при времени разгона до 30 сек.)
  • Очень тяжелый режим – максимальное значение инерционного момента, со значением пускового тока более 6хIном и продолжительным временем разгона.

Для выбора модели софтстартера необходимо руководствоваться таблицей нагрузки в зависимости от применения. Посмотреть её вы можете здесь, в одном из наших материалов.

При выборе конкретной модели необходимо учитывать нагрузку на двигатель и частоту запусков. При невысоких нагрузках целесообразно приобретать приборы без обратной связи. При частых пусках и большой нагрузке рекомендуется купить устройство плавного пуска с обратной связью.

Схема нереверсивного пуска асинхронного двигателя

Здравствуйте, уважаемые посетители и гости сайта http://zametkielectrika.ru.

Сегодня Драницын Кирилл Эдуардович, студент ГБОУ СПО «КПК» г.Чернушка, Пермского края, прислал свою работу на конкурс «Электрика своими руками».

Ее название «Схема нереверсивного пуска асинхронного двигателя с короткозамкнутым ротором», которая в полной мере дополняет мою статью, написанную несколько дней назад, о схеме магнитного пускателя нереверсивного типа без применения теплового реле.

Оборудование:

2. Магнитный пускатель ПМЛ (для пуска, остановки двигателя).

3. Тепловое реле ТРН (для защиты трехфазных асинхронных двигателей с короткозамкнутым ротором от перегрузок).

4. Кнопка пуск/стоп.

Рабочий инструмент:

  • отвертка плоская
  • бокорезы
  • нож
  • кабель (провод) одножильный
  • круглогубцы
  • плоскогубцы
  • трехфазная вилка

Схема нереверсивного пуска асинхронного двигателя с короткозамкнутым ротором

До начала работы хотелось бы объяснить обыкновенные понятия для понимания схемы:

  • нормально замкнутый контакт в кнопке пуск/стоп под цифрами (3-4)
  • нормально разомкнутый контакт в кнопке пуск/стоп под цифрами (1-2)

Алгоритм (порядок выполнения) сборки схемы нереверсивного пуска асинхронного двигателя (АД)

1. Силовая цепь:

1.1. Берем крайние 2 провода (фаза А и С) выходящие от двигателя

1.2. Присоединяем эти провода к верхним контактам теплового реле

1.3. Третий провод от двигателя соединяем с магнитным пускателем, присоединяя его на контакт 3 (фаза В)

1.4. Соединяем нижние контакты теплового реле с магнитным пускателем

1.5. Один нижний контакт теплового реле соединяем с контактом 1 на магнитном пускателе

1.6. Другой нижний контакт теплового реле соединяем с контактом 5 на магнитном пускателе

2. Цепь управления:

2.1. Контакт 6 на магнитном пускателе соединяем проводом с нормально замкнутым контактом кнопки «Стоп»

Нормально замкнутые контакты на кнопке «Стоп» под цифрами 3 и 4.

2.2. Делаем перемычку с нормально замкнутого контакта кнопки «Стоп» на нормально разомкнутый контакт кнопки «Пуск»

2.3. Блокируем нормально разомкнутый контакт: соединяем контакт 2 кнопки «Пуск» с блок-контактом магнитного пускателя 13

2.4. Соединяем нормально разомкнутый контакт 1 кнопки «Пуск» с блок-контактом магнитного пускателя 14

2.5. Перемычкой соединяем блок-контакт магнитного пускателя 13 с катушкой магнитного пускателя (контакт — А2)

2.6. С катушки магнитного пускателя (контакт А1) подаём питание на нормально замкнутые контакты теплового реле

2.7. С теплового реле (с нормально замкнутого контакта) на контакт 2 магнитного пускателя

2.8. Присоединяем питающий шнур к контактам магнитного пускателя – 2, 4, 6

Устройство и принцип работы системы запуска двигателя

Система запуска двигателя обеспечивает первоначальное проворачивание коленчатого вала ДВС, благодаря чему в цилиндрах происходит воспламенение топливовоздушной смеси и мотор начинает работать самостоятельно. В эту систему входят несколько ключевых элементов и узлов, работу которых мы рассмотрим далее в статье.

  1. Что представляет собой
  2. Устройство системы запуска двигателя
  3. Как работает запуск двигателя
  4. Особенности работы аккумуляторной батареи
  5. Сила тока при старте
  6. Особенности запуска двигателя в зимних условиях
Читать еще:  Схема подключения 3 х фазного счетчика

Что представляет собой

В современных автомобилях реализована электрическая система пуска двигателя. Также ее часто называют стартерной системой пуска. Одновременно с вращением коленвала в работу включается система ГРМ, зажигания и топливоподачи. Происходит сгорание топливовоздушной смеси в камерах сгорания и поршни проворачивают коленвал. После достижения определенных оборотов коленчатого вала двигатель начинает работать самостоятельно, по инерции.

Запуск двигателя

Чтобы запустить двигатель, нужно достичь определенной частоты вращения коленчатого вала. Для разных типов двигателей это значение отличается. Для бензинового мотора минимально необходимо 40-70 об/мин, для дизельного – 100-200 об/мин.

На начальном этапе автомобилестроения активно использовалась механическая система пуска с помощью заводной рукоятки. Это было ненадежно и неудобно. Сейчас от таких решений отказались в пользу электрической системы запуска.

Устройство системы запуска двигателя

В систему пуска двигателя входят следующие ключевые элементы:

  • механизмы управления (замок зажигания, дистанционный запуск, система Старт-Стоп);
  • аккумуляторная батарея;
  • стартер;
  • провода определенного сечения.

Схема запуска двигателя

Ключевым элементом системы является стартер, который, в свою очередь, питается от аккумуляторной батареи. Это электродвигатель постоянного тока. Он создает крутящий момент, который передается маховику и коленчатому валу.

Как работает запуск двигателя

После поворота ключа в замке зажигания в положение «запуск» замыкается электрическая цепь. Ток по плюсовой цепи от аккумулятора поступает на обмотку тягового реле стартера. Затем по обмотке возбуждения ток проходит к плюсовой щетке, затем по обмотке якоря на минусовую щетку. Так срабатывает тяговое реле. Подвижный сердечник втягивается и замыкает силовые пятаки. При движении сердечника выдвигается вилка, которая толкает приводной механизм (бендикс).

После замыкания силовых пятаков от аккумулятора подается пусковой ток по плюсовому проводу на статор, щетки и ротор (якорь) стартера. Вокруг обмоток возникает магнитное поле, которое приводит в движение якорь. Таким образом электрическая энергия от аккумулятора преобразуется в механическую энергию.

Работа выключенного и включенного стартера

Как уже было сказано, вилка, во время движения втягивающего реле, выталкивает бендикс к венцу маховика. Так происходит зацепление. Якорь вращается и приводит в движение маховик, который передает это движение коленчатому валу. После запуска двигателя маховик раскручивается до больших оборотов. Чтобы не повредить стартер, срабатывает обгонная муфта бендикса. При определенной частоте бендикс вращается независимо от якоря.

После запуска двигателя и отключения зажигания от положения «запуск» бендикс принимает исходное положение, а двигатель работает самостоятельно.

Особенности работы аккумуляторной батареи

От состояния и мощности аккумулятора будет зависеть успешный запуск двигателя. Многие знают, что для АКБ важны такие показатели, как емкость и ток холодной прокрутки. Эти параметры указываются на маркировке, например, 60/450А. Емкость измеряется в Ампер-часах. Аккумулятор имеет малое внутренне сопротивление, поэтому он может кратковременно отдавать большие токи, в несколько раз превышающие его емкость. Указанный ток холодной прокрутки 450А, но при соблюдении определенных условий: +18С° в течение не более 10 секунд.

Однако, подаваемый ток на стартер все равно будет меньше указанных значений, так как не учитывается сопротивление самого стартера и силовых проводов. Этот ток и называется пусковым током.

Справка. Внутреннее сопротивление аккумулятора в среднем составляет 2-9 мОм. Сопротивление стартера бензинового мотора в среднем 20-30 мОм. Как видно, для правильной работы необходимо, чтобы сопротивление стартера и проводов в несколько раз превышало сопротивление аккумулятора, иначе внутреннее напряжение аккумулятора при пуске будет проседать ниже 7-9 вольт, а этого допускать нельзя. В момент подачи тока напряжение исправного АКБ проседает в среднем до 10,8В в течение нескольких секунд, а затем вновь восстанавливается до 12В или чуть выше.

Аккумулятор отдает пусковой ток на стартер в течение 5-10 секунд. Затем нужно сделать паузу 5-10 секунд, чтобы аккумулятор «набрался сил».

Если после попытки запуска напряжение в бортовой сети резко падает или стартер прокручивается наполовину, то это свидетельствует о глубоком разряде АКБ. Если стартер выдает характерные щелчки, то аккумулятор окончательно сел. Среди других причин может быть поломка стартера.

Сила тока при старте

Стартеры для бензинового и дизельного мотора будут отличаться по мощности. Для бензиновых ДВС используются стартеры мощностью 0,8-1,4 кВт, для дизельных – 2 кВт и выше. Что это значит? Это значит, что стартеру с дизельным мотором нужно больше мощности, чтобы прокрутить коленвал на сжатие. Стартер мощностью 1 кВт потребляет 80А, 2 кВт потребляет 160А. Больше всего энергии уходит на начальную прокрутку коленчатого вала.

Среднее значение пускового тока для бензинового двигателя – 255А для успешной прокрутки коленвала, но это с учетом плюсовой температуры 18С° или выше. При минусовой температуре стартеру нужно крутить коленвал в загустевшем масле, что повышает сопротивление.

Особенности запуска двигателя в зимних условиях

В зимнее время бывает трудно запустить двигатель. Масло густеет, а значит провернуть его труднее. Также часто подводит аккумулятор.

При минусовой температуре внутреннее сопротивление аккумулятора повышается, батарея садится быстрее, также неохотно отдает нужный пусковой ток. Для успешного пуска двигателя зимой АКБ должна быть полностью заряжена и не должна быть замерзшей. Дополнительно нужно следить за контактами на клеммах.

Вот несколько советов, которые помогут запустить двигатель зимой:

  1. Перед включением стартера на холодную включите дальний свет на несколько секунд. Это запустит химические процессы в батарее, так сказать, «разбудит» аккумулятор.
  2. Не крутите стартер больше 10 секунд. Так батарея быстро садится, особенно на морозе.
  3. Выжмите полностью педаль сцепления, чтобы стартеру не нужно было крутить дополнительные шестерни в вязком трансмиссионном масле.
  4. Иногда могут помочь специальные аэрозоли или «стартерные жидкости», которые впрыскивают в воздухозаборник. При исправном состоянии мотор заведется.

Тысячи водителей ежедневно заводят свои моторы и едут по делам. Начало движения возможно благодаря слаженной работе системы запуска двигателя. Зная ее устройство, можно не только запускать двигатель в самых разных условиях, но и подобрать нужные компоненты в соответствии с требованиями именно к вашему автомобилю.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector