Kontakt-bak.ru

Контракт Бак ЛТД
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема эпра для люминесцентных ламп

Как устроены и работают ЭПРА для люминесцентных ламп

Люминесцентные лампы не могут работать напрямую от сети 220В. Для их розжига нужно создать импульс высокого напряжения, а перед этим прогреть их спирали. Для этого используют пускорегулирующие аппараты. Они бывают двух типов — электромагнитные и электронные. В этой статье мы рассмотрим ЭПРА для люминесцентных ламп, что кто такое и как они работают.

Из чего состоит люминесцентная лампа и для чего нужен балласт?

Люминесцентная лампа этот газоразрядный источник света. Он состоит из колбы трубчатой формы наполненной парами ртути. По краям колбы расположены спирали. Соответственно на каждом краю колбы расположена пара контактов — это выводы спирали.

Работа такой лампы основана на люминесценции газов при протекании через него электрического тока. Но ток просто так между двумя металлическими спиралями (электродами) просто так не потечет. Для этого должен произойти разряд между ними, такой разряд называется тлеющим. Для этого спирали сначала разогревают, пропуская через них ток, а после этого между ними подают импульс высокого напряжения, 600 и более вольт. Разогретые спирали начинают эмитировать электроны и под действием высокого напряжения образуется разряд.

Если не вдаваться в подробности – то описание процесса достаточно для постановки задачи для источника питания таких ламп, он должен:

1. Разогреть спирали;

2. Сформировать зажигающий импульс;

3. Поддерживать напряжение и ток на достаточном уровне для работы лампы.

Интересно: Компактные люминесцентные лампы, которые чаще называют «энергосберегающими», имеют аналогичную структуру и требования для их работы. Единственное отличие состоит в том, что их габариты значительно уменьшены благодаря особой форме, по сути это такая же трубчатая колба, на форма не линейная, а закрученная в спиралевидную.

Устройство для питания люминесцентных ламп называется пускорегулирующим аппаратом (сокращенно ПРА), а в народе просто — балластом.

Различают два вида балласта:

1. Электромагнитный (ЭмПРА) — состоит из дросселя и стартера. Его преимущества — простота, а недостатков масса: низкий КПД, пульсации светового потока, помехи в электросети при его работе, низкий коэффициент мощности, гудение, стробоскопический эффект. Ниже вы видите его схему и внешний вид.

2. Электронные (ЭПРА) — современный источник питания для люминесцентных ламп, он представляет собой плату, на которой расположен высокочастотный преобразователь. Лишен всех перечисленных выше недостатков, благодаря чему лампы выдают больший световой поток и срок службы.

Схема ЭПРА

Типовой электронный балласт состоит из таких узлов:

2. Высокочастотный генератор выполненный на ШИМ-контроллере (в дорогих моделях) или на авто генераторный схеме с полумостовым (чаще всего) преобразователем.

3. Пусковой пороговый элемент (обычно динистор DB3 с пороговым напряжением 30В).

4. Разжигающей силовой LC-цепи.

Типовая схема изображена ниже, рассмотрим каждый из её узлов:

Переменное напряжение поступает на диодный мост, где выпрямляется и сглаживается фильтрующим конденсатором. В нормальном случае до моста устанавливают предохранитель и фильтр электромагнитных помех. Но в большинстве китайских ЭПРА нет фильтров, а ёмкость сглаживающего конденсатора ниже необходимой, от чего бывают проблемы с поджигом и работой светильника.

Совет: если вы ремонтируете ЭПРА, то прочтите статью «Как проверить диодный мост» на нашем сайте.

После этого напряжение поступает на автогенератор. Из названия понятно, что автогенератор — это схема, которая самостоятельно генерирует колебания. В этом случае она выполнена на одном или двух транзисторах, в зависимости от мощности. Транзисторы подключены к трансформатору с тремя обмотками. Обычно используются транзисторы типа MJE 13003 или MJE 13001 и подобные, в зависимости от мощности лампы.

Хоть и этот элемент называется трансформатором, но выглядит он не привычно — это ферритовое кольцо, на котором намотано три обмотки, по несколько витков каждая. Две из них управляющие, в каждой по два витка, а одна — рабочая с 9 витками. Управляющие обмотки создают импульсы включения и выключения транзисторов, соединены одним из концов с их базами.

Так как они намотаны в противофазе (начала обмоток помечены точками, обратите внимание на схеме), то импульсы управления противоположны друг другу. Поэтому транзисторы открываются по очереди, ведь если их открыть одновременно, то они просто замкнут выход диодного моста и что-нибудь из этого сгорит. Рабочая обмотка одни концом подключена к точке между транзисторами, а вторым к рабочим дросселю и конденсатору, через нее происходит питание лампы.

При протекании тока в одной из обмоток в двух других наводится ЭДС соответствующей полярности, которое и приводит к переключениям транзисторов. Автогенератор настроен на частоту выше звукового диапазона, то есть выше 20 кГц. Именно этот элемент является преобразователем постоянного тока в ток переменой частоты.

Для запуска генератора установлен динистор, он включает схему после того как напряжение на нем достигнет определённого значения. Обычно устанавливают динистор DB3, который открывается в диапазоне напряжений около 30В. Время, через которое он откроется, задается RC-цепью.

Более продвинутые варианты ЭПРА, строятся не на автогенераторной схеме, а на базе ШИМ-контроллеров. Они имеют более устойчивые характеристики. Однако, за более чем пять лет занятий электроникой мне не разу не попался такой ЭПРА, все с которыми работал, были автогенераторными.

Выше неоднократно упоминалось об LC цепи. Это дроссель, установленный последовательно со спиралью, и конденсатор, установленный параллельно лампе. По этой цепи сначала протекает ток, прогревающий спирали, а затем образуется импульс высокого напряжения на конденсаторе её зажигающий. Дроссель выполняется на Ш-образном ферритовом сердечнике.

Эти элементы подбираются так, чтобы при рабочей частоте они входили в резонанс. Так как дроссель и конденсатор установлены последовательно на этой частоте наблюдается резонанс напряжений.

При резонансе напряжений на индуктивности и ёмкости начинает сильно расти напряжение в идеализированных теоретических примерах до бесконечно большого значения, при этом ток потребляется крайне малый.

В результате мы имеем подобранные по частотам генератор и резонансный контур. По причине роста напряжения на конденсаторе происходит зажигание лампы.

Ниже изображен другой вариант схемы, как вы можете убедиться – все в принципе аналогично.

Благодаря высокой рабочей частоте удаётся достигнуть малых габаритов трансформатора и дросселя.

Для закрепления пройденной информации рассмотрим реальную плату ЭПРА, на картинке выделены основные узлы описанные выше:

А это плата от энергосберегающей лампы:

Заключение

Электронный балласт значительно улучшает процесс розжига ламп и работает без пульсаций и шума. Его схема не очень сложна и на её базе можно построить маломощный блок питания. Поэтому электронные балласты от сгоревших энергосберегаек – это отличный источник бесплатных радиодеталей.

Люминесцентные лампы с электромагнитным пускорегулирующим аппаратом запрещено использовать в производственных и бытовых помещениях. Дело в том, что у них сильные пульсации, и возможно появление стробоскопического эффекта, то есть если они будут установлены в токарной мастерской, то при определенной частоте вращения шпинделя токарного станка и другого оборудования – вам может казаться, что он неподвижен, что может вызвать травмы. С электронным балластом такого не произойдет.

Схема эпра для люминесцентных ламп

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети

220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Читать еще:  Назначение УЗО

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

Ремонт

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.

Зачем нужен ЭПРА (электронный балласт) для люминесцентных ламп

Что такое ЭПРА и для чего он нужен

Применение электронной пуско-регулирующей аппаратуры или аппарата (сокращенно ЭПРА) дает существенную прибавку к сроку полезной эксплуатации осветительного оборудования этого вида.

ЭПРА – это очередной виток развития систем зажигания лампы. Электронный баласт выпускается в виде отдельного модуля с контактами для подачи напряжения питания и контактами для подключения одного или нескольких источников света. Такой блок пришел на замену простой, но морально устаревшей схемы с дросселем и стартером. Такой конструкцией обычно оснащаются все современные светильники.

Устройство ЭПРА

Электронный пускорегулирующий аппарат (electronic ballast) является сложным электронным устройством. В состав входят:

  • Фильтр помех: необходим для нивелирования влияния помех из электросети и в нее;
  • Выпрямитель: необходим для преобразования переменного тока в постоянный;
  • Опционально: корректор мощности;
  • Сглаживающий фильтр: служит для снижения пульсаций;
  • Инвертор: повышает напряжение до необходимого;
  • Балласт: аналог электро-магнитного дросселя.

В некоторых моделях инвертор может быть дополнен регулятором яркости. Для этого необходим внешний светорегулятор (либо ручной, либо автоматический на базе фоторезистора). Схем разработано очень много. Элементная база ЭПРА для люминесцентных ламп (лл) весьма разнообразна: от мощных полевых транзисторов в мостовой схеме при нагрузках в сотни Ватт, до микросхем-драйверов в маломощных светильниках. Но тем не менее алгоритм работы един.

В упрощенном виде подключение одной лампы дневного света выглядит так:

Схема подключения ЭПРА с одной лампой

Т.е. подключение состоит всего из двух компонентов: люминесцентного источника света и электронного балласта. С точки зрения электрика это намного проще классического подключения люминесцентного светильника при использовании электромагнитного дросселя и стартера. На клеммы N и L подается сетевое напряжение. Вывод ground – заземление. Для работы электронного балласта подключение заземляющего контакта не является обязательным и служит лишь для безопасной эксплуатации.

ЭПРА сложны и состоят из множества электронных компонентов. Человеку без инженерного образования понять схему очень сложно. К тому же не каждый электрик сможет разобраться во внутреннем устройстве.

Один из вариантов принципиальной схемы ЭПРА

Это достаточно простая схема для инженера-электроника. В упрощенном понимании работа электронного балласта выполняется следующем образом. Выпрямление производится двухполупериодным выпрямителем – диодным мостом. Сглаживание пульсаций выполняется электролитическим конденсатором, рассчитанным на напряжение выше сетевого, так как амплитудное значение синусоиды для сети переменного тока примерно в полтора раза выше сетевого (√2*220В). Остальными процессами управляет микросхема. За подачу напряжения на лампы отвечают полевые транзисторы. Далее преобразователь работает автономно, частота не изменяется.

Знание электроники позволяет создать и схему питания люминесцентной лампы от низковольтных источников. Схема получается достаточно компактна. Самое важно правильно намотать трансформатор.

Принципиальная схема питания лл от низковольтного источника

Принцип работы пускателя

Какая бы ни была применена схема для пуска люминесцентной лампы. Общий принцип работы остается неизменным. В принципе, сходные процессы происходят при использовании дросселя и стартера. Всего три фазы:

  • Первоначальный прогрев электродов. В электронном баласте это происходит достаточно мягким повышением напряжения на вольфрамовые нити.
  • Поджиг. В этот момент схема подает высоковольтный импульс (обычно около полутора киловольт). Этого достаточно для электрического пробоя газа и паров ртути. Напряжение поджига у люминесцентных ламп существенно выше напряжения горения.
  • Горение. После высоковольтного импульса схема снижает напряжение до необходимого для поддержания тлеющего разряда. Частота переменного тока на электродах может достигать 38 кГц в зависимости от схемы.

В ЭПРА поджигающей импульс обеспечивается электронной схемой. В классической схеме – за счет энергии, накопленной дросселем. Прогрев электродов также обеспечивает ЭПРА. При стартерной схеме включения, электроды прогреваются в момент замыкания контактов стартера. Его можно заменить кнопкой без фиксации.

Схемы подключения

Разработка такого электронного устройства велась для минимизации конструкции светильника и замещения крупногабаритного дросселя и стартера одним единственным модулем, который подключается к сети питания переменного тока и к электродам люминесцентного источника света.

Читать еще:  Как подключить лампочку и выключатель

ЭПРА лишены всех минусов классических схем подключения.

Существуют модули, предназначенные для одновременного подключения четырех ламп.

Подключение ЭПРА к четырем лампам

Как в случае с одной или двумя лампами, схема не требует никаких дополнительных элементов. Модуль ЭПРА соединяется напрямую с лл.

Схема подключения ЭПРА 4х18 Вт (Пример:Navigator NB-ETL-418-EA3)

Схема подключения ЭПРА 2х36 Вт (Пример:ELECTRONIC BALLAST ETL-236)

Устройство электронного балласта для люминесцентных ламп

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

  1. Для чего нужен балласт?
  2. Схемы электронных балластов для люминесцентных ламп
  3. Ремонт ЭПРА
  4. ЭПРА для компактных ЛДС
  5. Люминесцентные лампы T8
  6. Как изготовить светильник своими руками?

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Лампы накаливания

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.

Люминесцентная лампа, С1 и С2 – конденсаторы Электрическая схема ЭПРА

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.

Фото внутреннего устройства ЭПРА Фото типового устройства ЭПРА

Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Лампа OSRAM с цоколем E27

Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Простейший светильник из двух ламп

ЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС

Интересно то, что цена такого балласта недорога, всего 2 доллара. Для некоторых, покажется, что все-таки 2$ за балласт дороговато, но после вскрытия, оказалось, что в нем использованы компоненты в разы дороже общей цены балласта. Одна только пара мощных высоковольтных транзисторов 13009 уже стоят более доллара каждый.

Кстати, срок службы ЛДС зависит от способа запуска лампы. Из графиков видно, что холодный старт резко сокращает срок службы лампы.

Особенно в случае применения упрощенных электронных балластов, которые резко выводят ЛДС в рабочий режим. Да и способ питания лампы постоянным током также снижает срок службы. Незначительно — но всё-таки снижает. Примеры — на схемах ниже:

Простая схема электронного балласта (без микросхемы управления) почти мгновенно зажигает лампу. И для долговечности лампы это плохо. За короткое время нить накала не успевает разогреться, а высокое напряжение, приложенное между ее нитями, вырывает из нити накала требуемое количество электронов, необходимое для зажигания лампы, и этим разрушает накал, понижая его эмиссионную способность. Типовая принципиальная схема электронного балласта:

Поэтому рекомендуется выбирать белее серьёзную схему, с задержкой подачи питания (клик для увеличения):

В схеме купленного балласта особенно порадовал сетевой фильтр — чего нет в электронных трансформаторов для галогенных ламп. Фильтр оказался не простой: дроссель, варистор, предохранитель (не резистор как в ЭТ, а самый настоящий предохранитель), емкости перед и после дросселя. Дальше идет выпрямитель и два электролита — это не похоже на китайцев.

После уже идет стандартная, но в разы улучшенная схема двухтактого преобразователя. Тут сразу на глаза бросаются две вещи — теплоотводы транзисторов и применение более мощных резисторов в силовых цепях, обычно китайцам без разницы, где ток в цепи больше или меньше, они используют стандартные резисторы 0,25вт.

После генератора идут два дросселя, именно благодаря им происходит повышение напряжения, тут тоже все очень аккуратно, никаких претензий. Даже в мощных электронных трансформаторах китайские производители редко используют теплоотводы для транзисторов, но здесь как видим они есть, и не только есть, но и очень аккуратны — транзисторы прикручены через дополнительные изоляторы и через шайбы.

С обратной стороны плата тоже сияет аккуратностью монтажа, никаких острых выводов и испорченных дорожек, олово так-же не пожалели, все очень красиво и качественно.

Подключил устройство — оно отлично работает! Я уже начал думать, что сборку делали немцы, под суровым контролем, но тут вспомнил цену и почти поменял свое мнение о китайских производителях — молодцы парни, поработали на славу! Обзор подготовил АКА КАСЬЯН.

Схема эпра для люминесцентных ламп

Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Читать еще:  Параллельное и последовательное и соединение ламп в быту

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или ЭмПРА (дросель и стартер)



Принцип работы: при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  • Долгий пуск не менее 1 до 3 секунд (зависимость от износа лампы)
  • Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем детали станков, вращающихся синхронно с частотой сети- кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения двох ламп применяются стартеры на 127 Вольт, они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

Устройство и виды электронного балласта для люминесцентных ламп

Электронный балласт выступает своеобразным пусковым механизмом, обеспечивающим стабильную работу люминесцентной лампы. Применение данного устройства актуально при недостаточной электрической нагрузке или при отсутствии ограничения в потреблении тока.

  1. Условия для подключения, запуска и горения люминесцентной лампы
  2. Основные характеристики балластов
  3. Преимущества и недостатки электронного балласта
  4. Рекомендации специалистов по выбору
  5. Подбор балласта по производителю

Условия для подключения, запуска и горения люминесцентной лампы

Люминесцентная лампочка представляет собой стеклянную колбу, заполненную инертным газом с добавлением незначительного количества ртути. На трубке присутствуют электроды, подающие напряжение определенной величины. Формируемое электрическое поле провоцирует появление разряда и, как следствие, тока.

Продуцируемое голубоватое свечение практически неощутимо для человека, поскольку относится к невидимому цветовому диапазону. Издаваемое ультрафиолетовое излучение попадает на покрытие лампы, содержащее соединения фосфора. В результате формируются лучи, находящиеся в видимой части спектра.

При включении люминесцентной лампы наблюдается лавинообразное увеличение тока, что провоцирует снижение сопротивления. Поэтому присоединить такого потребителя напрямую к сети невозможно. Для эффективной и длительной работы лампочки необходимо предупредить перегрев электродов. Для этого используется балластник или дроссель. Он продуцирует дополнительную нагрузку, когда ее не хватает в сети, что ограничивает величину тока.

Основные характеристики балластов

ПРА – пускорегулирующие аппараты – бывают двух типов: электронные и электромагнитные.

Электромагнитные устройства

Агрегат работает благодаря индуктивному сопротивлению дросселя. Его встраивают в схему последовательно лампе.

Для включения осветительного прибора также необходим стартер. Это небольшое устройство, напоминающее лампу, из категории газоразрядных. Внутри него находятся электроды из биметалла.

Стартер подключают к прибору параллельным способом.

При наличии электромагнитного балласта люминесцентная лампа работает по следующей схеме:

  1. При поступлении напряжения в стартере появляется разряд. В результате происходит разогрев электродов, вследствие чего они замыкаются.
  2. Рабочий ток увеличивается в несколько раз. Этот процесс ограничивает только внутреннее сопротивление дросселя.
  3. На фоне роста показателей тока разогреваются электроды лампы.
  4. При остывании стартера происходит размыкание цепи.
  5. Происходящие процессы приводят к появлению относительно высокого напряжения. В результате происходит «зажигание» источника внутри колбы.

Когда осветительный прибор перейдет в обычный режим работы, его напряжение будет существенно ниже сетевого, чего недостаточно для активации стартера. Поэтому он находится в разомкнутом виде и не влияет на функционирование лампы.

При наличии электромагнитных модулей на включение осветительных приборов уходит относительно много времени. В процессе эксплуатации это время постоянно увеличивается, что является существенным недостатком изделий. Такие источники света мигают в процессе работы, поэтому их не рекомендуется использовать в жилых помещениях. Также они довольно шумны и потребляют много электроэнергии.

Электронные агрегаты

Электронные пускорегулирующие аппараты (ЭПРА) являются своеобразными преобразователями напряжения. В схеме устройств отсутствует стартер. Чтобы понять, что такое ЭПРА для светодиодного или люминесцентного светильника, необходимо разобрать принцип его работы.

Магнитный балласт для компактных ламп (ПРА)

Перед подачей на катоды лампы зажигающего потенциала они подвергаются нагреву. При этом высокая частота напряжения, которое поступает к устройству, увеличивает его КПД и предупреждает мерцание. Также в процесс зажигания может быть задействован колебательная цепь. Она входит в резонанс до того момента, пока в колбе лампы отсутствует разряд. Это приводит к увеличению напряжения и к росту тока, что провоцирует разогрев катодов.

Балласты для компактных ламп

Сравнительно недавно на рынке появились люминесцентные лампы, адаптированные под стандартные плафоны. Это позволяет использовать их в качестве осветительных приборов в помещениях любого назначения без замены светильников.

Балласт компактных ламп размещается внутри патрона. Поэтому их ремонт теоретически возможен, но на практике не осуществляется.

Преимущества и недостатки электронного балласта

Электронный пускорегулирующий аппарат имеет ряд неоспоримых преимуществ:

  • Запуск лампы с электрическим балластом происходит очень быстро – на протяжении 1 секунды после включения.
  • ЭПРА генерирует частоту 38-50 кГц. Поэтому лампы с электронным балластом лишены таких негативных моментов, как мерцание и искажение изображения.
  • Срок службы приборов с электронным ПРА увеличивается в два раза.

Преимуществом электронного балласта для люминесцентных ламп называют простую схему его подключения. Также подобное устройство относится к категории энергоэффективных. При этом его КПД составляет 95%, что является довольно хорошим показателем.

Электронные балласты для ламп дневного света стоят дороже своих электромагнитных аналогов. Также их недостатком называют большую вероятность выхода из строя при скачках напряжения.

Рекомендации специалистов по выбору

При приобретении балластника обращают внимание на мощность модуля. Она должна соответствовать аналогичному показателю осветительного устройства. В противном случае прибор не сможет нормально функционировать.

При покупке балласта нельзя ориентироваться только на его стоимость. Электромагнитные приборы стоят дешевле, но они менее эффективны. Высокая стоимость электронных устройств нивелируется их отличными характеристиками.

Подбор балласта по производителю

При покупке дросселя следует ориентироваться на репутацию фирмы, которая его выпускает. Изделие китайского производства не всегда сможет оправдать ожидания пользователей. Специалисты рекомендуют покупать приборы от брендов, продукция которых проверена временем и подтверждена положительными отзывами клиентов.

Качественные балласты имеют крепкий корпус, изготовленный из пластика, устойчивого к деформациям и действию критических температур. Им присвоена степень защиты IP2. Это означает, что в прибор не могут проникнуть посторонние предметы, размер которых больше 12,5 мм.

Признаком хорошего балласта в лампе называют ее плавный запуск. Между включением прибора и появлением освещения всегда присутствует небольшая пауза. При ее отсутствии схема дросселя упрощена, что снижает срок эксплуатации лампы.

Популярные электромагнитные балласты

У пользователей большой популярностью пользуются электромагнитные дроссели, изготовленные фирмой E.Next. Производитель поставляет высококачественную продукцию, которая соответствует международным стандартам. На свои изделия компания предоставляет гарантию и обеспечивает сервисную поддержку.

Не меньшим спросом пользуется продукция известного европейского производителя электрооборудования Philips. Такие изделия позиционируются как энергоэффективные и надежные. При их использовании удается правильно регулировать нагрузку, что положительно сказывается на работе ламп.

Лучшие устройства электронного типа

Дроссели электронного типа относятся к современным изделиям с оптимальными функциями. Подобную продукцию выпускает немецкая компания Osram. Стоимость балластов от данной фирмы выше китайских аналогов, но ниже в сравнении с изделиями Philips и Vossloh-Schwabe.

Модули Horos относятся к категории бюджетных. Несмотря на невысокую стоимость, они имеют оптимальное КПД, характеризуются низким энергопотреблением. При этом балласты этой фирмы повышают качество работы осветительных устройств и устраняют задержку при включении. При их использовании можно полностью забыть о мерцании осветительных приборов.

Популярность на рынке имеет продукция молодой, но перспективной компании Feron. Она предоставляет покупателям изделия европейского качества по доступным ценам. Балласты Feron предохраняют лампы от перепадов напряжения, устраняют мерцание и экономят электроэнергию. Производимое приборами освещение мягкое и равномерное.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector