Kontakt-bak.ru

Контракт Бак ЛТД
18 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема нереверсивного магнитного пускателя

Большая Энциклопедия Нефти и Газа

Нереверсивный магнитный пускатель

Нереверсивный магнитный пускатель состоит из трехполюсного контактора и теплового реле. [1]

Нереверсивный магнитный пускатель состоит из трех полюсного контактора и теплового реле. [2]

Нереверсивный магнитный пускатель ( рис. 50, а) представляет собой трехполюсный контактор переменного тока, снабженный в двух фазах тепловыми реле максимального тока. Все эти элементы встроены в общий металлический ящик пускателя. [3]

Нереверсивный магнитный пускатель состоит из трехполюсного контактора и теплового реле. [4]

Нереверсивный магнитный пускатель ( рис. 54, а) представляет собой трехполюсный контактор переменного тока, снабженный в двух фазах тепловыми реле максимального тока. Все эти элементы встроены в общий металлический ящик пускателя. [6]

Нереверсивный магнитный пускатель показан на рис. 82, а. Включают и отключают магнитный пускатель дистанционно с помощью кнопок Стоп и Пуск. Одновременно с главными контактами в цепи управления включается блок-контакт Л, что позволяет отпустить кнопку П, оставляя пускатель во включенном положении. Два тепловых элемента реле РТ имеют в цепи управления нормально замкнутые контакты. РТ, цепь тока в катушке прерывается и происходит отключение главных контактов. Отключение также может быть выполнено от руки нажатием кнопки С, разрывающей цепь питания катушки. [8]

Нереверсивный магнитный пускатель серии ПА состоит из трехполюсного контактора, тепловых реле и блок-контактов. В реверсивном магнитном пускателе в отличие от не-ревертивного имеются два трехполюсных контактора. В каждый пускатель ( нереверсивный и реверсивный) IV, V и VI величин встраивается по два тепловых реле типа ТРП левого и правого исполнений. В пускатели III величины встраивается по одному двухфазному реле типа ТРН. Реле типа ТРП выполнены с самовозвратом и ручным возвратом. Реле типа ТРН имеет только ручной возврат. Пускатели могут быть изготовлены без тепловых реле. [10]

Нереверсивным магнитным пускателем ( рис. 6.10) управляют дистанционно с помощью двухкнопочного поста, а реверсивным — трехкнопочного. [12]

Как устроен нереверсивный магнитный пускатель . [13]

Типовая схема управления нереверсивным магнитным пускателем показана на рис. 3.3, а. В цепь удерживающей катушки контактора включены кнопки управления Вкл. [14]

Схемы подключения магнитного пускателя для управления асинхронным электродвигателем

Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

Рис. 1. Схема включения нереверсивного магнитного пускателя: а — монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя

На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 — С1, Л2 — С2, Л3 — С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 — 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Схема нереверсивного магнитного пускателя

Магнитный пускатель позволяет осуществить дистанционное управление, включать и отключать потребителя на расстоянии с пульта управления. Самое распространенное применение магнитного пускателя получили асинхронные двигателя, при помощи его осуществляется пуск, стоп и реверс (смена направления вращение вала) двигателя.

Еще магнитный пускатель служит для разгрузки маломощных контактов. Например, возьмем простой выключатель, который стоит дома, он рассчитан включать и отключать нагрузку не более 10 Ампер, определяем мощность: ток умножаем на напряжение 10*220 = 2200 Вт. Это значит, что через этот выключатель, можно, включить не более двадцати двух лампочек мощностью 100Вт.

Разгрузим контакт простого выключателя с помощью магнитного пускателя третьей величины, у которого силовые контакты рассчитаны включать и отключать ток 40 Ампер, мощность, которую он сможет включать и отключать: 40*220 = 8800 Вт. В итоге сможем одним щелчком выключателя, включать и отключать всю алею уличного освещения через контакты магнитного пускателя.

Управляется магнитный пускатель третьей величины с помощью электромагнитной катушки, которая потребляет 200Вт в момент срабатывания, а в сработанном состоянии потребляет всего 25Вт, что получается 200/380 = 0,52 А — это ток которым необходим, чтобы пускатель сработал и включил основную силовую цепь. Теперь представьте, что можно поставить маленький компактный выключатель, который будет управлять магнитным пускателем, а он своими силовыми контактами будет включать и отключать большие мощности.

Для чего нужно тепловое реле в комплекте с магнитным пускателем. Тепловое реле защищает двигатель от перегруза и от неполнофазного режима работы. Что такое неполнофазный режим – это когда при работе электродвигателя исчезла одна из трех фаз.

Причины однофазного режима: перегорела плавкая вставка на одной фазе, подгорел контакт на клемме или выкрутился винт на клеммнике магнитного пускателя и выпал фазный провод от вибрации, плохой контакт на силовых контактах пускателя.

Читать еще:  Сборка электрощита – правила, схема и монтаж

При перегрузке двигателя или работе в неполнофазном режиме увеличивается ток, проходящий через тепловое реле. В тепловом реле нагреваются токопроводящие биметаллические пластины, под действием тепла они выгибаются, и механически воздействует на размыкание контакта в тепловом реле, который отключает питание катушки магнитного пускателя, происходит отключение двигателя по средствам пускателя.

СЕМА ПОДКЛЮЧЕНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ ЧЕРЕЗ МАГНИТНЫЙ ПУСКАТЕЛЬ.

Схема состоит:
из QF — автоматического выключателя; KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск). Рассмотрим работу схемы в динамике.
Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя.

КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.

Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Не реверсивная схема магнитного пускателя с катушкой 380В.

РЕВЕРСИВНАЯ СХЕМА МАГНИТНОГО ПУСКАТЕЛЯ.

Схема состоит аналогично, так же, как на не реверсивной схеме, единственно добавилась кнопка реверса и магнитный пускатель.

Принцип работы схемы немного сложнее, рассмотрим в динамике. Что требуется от схемы, реверс двигателя за счет переворачивания местами двух фаз. При этом нужна блокировка, которая не давала бы включиться второму пускателю, если первый находится в работе и наоборот. Если включить два пускателя одновременно то произойдет КЗ – короткое замыкание на силовых контактах пускателя.

Включаем QF – автоматический выключатель, давим кнопку «Пуск[1]» подаем напряжение на КМ1 катушку пускателя, пускатель срабатывает. Силовыми контактами включает двигатель, при этом шунтируется пусковая кнопка «Пуск [1]».

Блокировка второго пускателя — КМ2 осуществляется, нормально замкнутым КМ1 — блок контактом. При срабатывании КМ1 — пускателя, размыкается КМ1 — блок контакт тем самым размыкает подготовленную цепочку катушки второго КМ2 — магнитного пускателя.

Чтобы осуществить реверс двигателя, его необходимо отключить. Отключаем двигатель, нажатием кнопку «С — стоп», снимается напряжение с катушки, которая находилась в работе. Пускатель и блок контакты под действием пружин возвращаются в исходное положение.

Схема готова к реверсу, нажимаем кнопку «Пуск[2]», подаем напряжение на катушку — КМ2, пускатель — КМ2 срабатывает и включает двигатель в противоположном вращение. Кнопка «Пуск[2]» шунтируется блок контактом — КМ2, а нормально замкнутый блок контакт КМ2 размыкается и блокирует готовность катушки магнитного пускателя — КМ1.
При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Принцип работы схемы магнитного пускателя с катушкой на 220В тот же, что и с катушкой на 380В.

Не реверсивная схема магнитного пускателя с катушкой 220В.

Просмотр и ввод комментариев к статье

Схема нереверсивного магнитного пускателя

Схема пускателя ( рис.128 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. защиту электродвигателя.

Поясним действие схемы управления электродвигателем в такой последовательно-

1. подготовка схемы к работе;

3. действие защит.

Рис. 128. Принципиальная электрическая схема нереверсивного магнитного пускателя

Элементы схемы

На рис. 129 приняты такие обозначения:

в силовой части:

1. Л1, Л2, Л3 – линейные провода питающей сети;

2. КМ1…КМ3 – главные контакты линейного контактора КМ;

3. КК1, КК2 – нагревательные элементы тепловых реле;

4. М – обмотка статора асинхронного двигателя;

5. FU – предохранители, для защиты цепи катушки КМ от токов к.з.;

6. КК1, КК2 – размыкающие контакты тепловых реле;

7. КМ – катушка линейного контактора;

8. SB1 – кнопка «Пуск»;

9. SB2 – кнопка «Стоп»

Подготовка схемы к работе

Для подготовки схемы к работе подают питание на линейные провода Л1, Л2 и Л3.

После этого никакие электрические цепи не образуются. Схема готова к работе.

Работа схемы

Пуск

Для пуска нажимают кнопку SB1 «Пуск». При этом возникает цепь тока через ка-

тушку линейного контактора КМ:

линейный провод Л2 – верхний предохранитель FU – размыкающий контакт тепло-

вого реле КК2 – катушка КМ – размыкающие контакты кнопки SB2 – замыкающие контак

ты кнопки SB1 “Пуск” – размыкающий контакт теплового реле КК1 – нижний предохра-

нитель FU – линейный провол Л3.

Контактор включается, при этом:

1. замыкаются главные контакты КМ1. КМ3 в силовой части схемы, вследствие че

го двигатель включается в сеть;

3. замыкается вспомогательный контакт КМ4, после чего кнопку “Пуск” можно от

После отпускания кнопки ток катушки контактора КМ будет протекать через вспо-

могательный контакт КМ4.

Таким образом, этот контакт предназначен для удержания контактора КМ во вклю-

ченном состоянии после отпускания кнопки “Пуск”.

Если по каким-либо причинам этот контакт не пропускает ток, то при нажатии кнопки “Пуск” двигатель включится, а после отпускания – отключится.

Остановка

Для остановки электродвигателя нажимают кнопку SB2 “Стоп”. Контакты этой

кнопки размыкаются, поэтому цепь тока через катушку КМ пропадает.

Контактор КМ отключается, при этом:

1. размыкаются главные контакты КМ1. КМ3 – двигатель отключается от сети;

2. размыкается вспомогательный контакт КМ4.

Если отпустить кнопку SB2 “Стоп”, ее контакт замкнется. Однако после этого кон-

тактор КМ не включится, т.к. разомкнуты контакт КМ4 и контакт кнопки SB1 Пуск».

Для повторного пусканадо нажатькнопку SB1 «Пуск».

Схема предусматривает 2 вида защит:

1. от токов перегрузки при помощи тепловых реле КК1, КК2;

2. по снижению напряжения при помощи контактора КМ.

Под перегрузкой понимают увеличение тока обмотки статора двигателя выше номи

нального. Основная причина перегрузки двигателя состоит в перегрузке механизма.

Например, перегрузка грузовой лебёдки возникает при подъёме груза большего, чем предусмотрено грузоподъёмностью лебёдки.

Защита от токов перегрузки работает так.

При перегрузке тепловое реле КК1 ( или КК2 ) размыкает свой контакт в цепи ка-

тушки линейного контактора КМ.

Контактор КМ отключается, при этом:

1. размыкаются главные контакты КМ1. КМ3 – двигатель отключается от сети;

2. размыкается вспомогательный контакт КМ4.

Снижение напряженияприводит к уменьшению вращающего момента и скорости двигателя, вследствие чого увеличивается ток обмотки статора. При глубоких провалах напряжения ( до 60% и менее ) возможны более тяжелые последствия: остановка и стоян-

ка под током электроприводов насосов, вентиляторов и компрессоров, или, что ещё опас-

нее, реверс электродвигателей грузовых лебёдок или брашпилей.

Потому при снижении напряжения до недопустимих значений схемы управления

отключают двигатель от питающей сети.

Защита по снижению напряжения работает так.

При снижении напряжения до 60% и менее якорь контактора КМ отпадает под дей-

ствием пружины или собственного веса, поэтому его главные и вспомогательный контак-

ты размыкаются. Двигатель отключается от сети.

При восстановлении напряжения до 80% и более самопроизвольное включение кон

тактора КМ невозможно, потому что разомкнуты вспомогательный контакт КМ4 и контак

ты кнопки SB1“Пуск”.

Для повторного пусканадо нажать кнопку SB1 ( «Пуск» ).

Таким образом, рассмотренная защита по снижению напряжения исключает автома

тическое повторное включение двигателя после восстановления напряжения. Такая защи-

та называется нулевой.

Реверсивный магнитный пускатель

Основные сведения

Схема пускателя ( рис.129 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. защиту электродвигателя.

Поэтому он имеет два реверсивных контактора: КМ1 «Вперёд», КМ2 «Назад» и три

кнопки : SB1 «Вперёд», SB2 «Назад» и SB3 «Стоп».

Рис. 129. Принципиальная электрическая схема реверсивного магнитного пускателя

Работа схемы

Для пуска двигателя в направлении «Вперед» нажимают кнопку SB1, при этом включается контактор КМ1 «Вперёд». Далее схема работает так, как в предыдущей схеме.

Для реверса двигателя надо сначала нажать кнопку SB3 «Стоп», и дождавшись остановки электродвигателя, нажать кнопку SB2 «Назад». При этом меняются местами линейные провода А и С, поэтому двигатель реверсирует.

Читать еще:  Обозначения выключателей и переключателей на электрических схемах

Защиты о токов перегрузки и по снижению напряжения работают так же, как в пре-

Блокировка одновременного включения реверсивных контакторов

Кроме защит, в схеме предусмотрен узел, исключающий одновременное включе-

ние реверсивных контакторов КМ1 и КМ2.

Такое включение приводит к двойному металлическому короткому замыканию в линии электропередачи.

Действительно, если предположить, что одновременно замкнуты контакты КМ1.1…КМ1.3 контактора КМ1 и КМ2.1…КМ2.3 контактора КМ2, то образуются две па-

раллельные цепи короткого замыкания:

а ) линейный провод А – контакт КМ1.1 – контакт КМ2.3 – линейный провод С;

б ) линейный провод А – контакт КМ2.1 – контакт КМ1.3 — линейный провод С.

При этом образуется цепь тока короткого замыкания, протекающего через линей

ные провода А и С и далее – через фазные обмотки А и С статора синхронного генератора.

При этом возможно повреждение линии электропередачи и обмотки статора генера

тора, а также сваривание контактов, попавших в цепь короткого замыкания, т.е. КМ1.1, КМ2.3 и КМ2.1 и КМ1.3.

Обмотка статора двигателя не повреждается, т.к. ток короткого замыкания протека

Чтобы избежать одновременного включения реверсивных контакторов , в цепь ка-

тушки контактора КМ1 «Вперёд» включают размыкающие контакты КМ2:5 контактора КМ2 «Назад», и наоборот, в цепь катушки контактора КМ2 включают размыкающие контакты КМ1:5 контактора КМ1 «Вперед».

Теперь при включенном, например, контакторе «Вперед» случайное нажатие кноп

ки SB2 «Назад» не приведёт к включения контактора КМ2 «Назад», поскольку в цепи его катушки разомкнут вспомогательный контакт КМ1:5 контактора «Вперед».

Аналогично работает схема при включенном контакторе «Назад».

Описанная электрическая блокировка дополняется механической, при помощи ко-

ромысла, поворачивающегося на оси. Если один из контакторов включён, его якорь пере

мещается и поворачивает коромысло в положение, в котором якорь другого контактора заклинен.

Промышленные типы магнитных пускателей

Промышленность выпускает магнитные пускатели переменного тока серий ПМГ1000, ПМТ1000, ПММ и постоянного тока серий ПП1000…ПП5000.

На судах применяются магнитные пускатели серии ПММ, рассчитанные на переменный ток частотой 50 Гц, напряжением 380 В.

Втягивающие катушки пускателей рассчитаны на номинальные напряжения 127, 220 и 380 В переменного тока.

Режимы работы пускателей – продолжительный ( S1 ), кратковременный ( S2 ) и

повторно-кратковременный ( S3 ) с частотой включений до 600 в час при ПВ = 40%.

Условные обозначения типоисполнений пускателей ПММ */**/***/****/ расшифровываются так:

ПММ – пускатель магнитный морской;

*/ : 1 — первая величина, номинальный ток 25 А; 2 — вторая величина, номинальный ток 50 А; 3 – третья величина, номинальный ток 100 А; 4 — четвертая величина, номиналь

**/ : исполнение по роду защиты от воздействия окружающей среды: 0 – открытое;

1 – брызгозащищенное; 2 – водозащищенное;

***/: исполнение по направлению вращения электродвигателя: 1 – нереверсивный; 2 – реверсивный;

****/: исполнение по наличию в пускателе дополнительных элементов: 0 – без дополнительных элементов; 1 – с предохранителями; 2 – с кнопками управления; 3 – с кнопками управления и пакетным переключателем; 4 — с предохранителями и пакетным переключателем.

Пример.

Условное обозначение типоисполнения пускателя ПММ 2213 расшифровывается так:

ПММ 2213 – магнитный пускатель морской второй величины ( номинальный ток 50 А ), водозащищенный, нереверсивный, с кнопками управления и пакетным переключа-

Дата добавления: 2020-02-05 ; просмотров: 158 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Нереверсивный магнитный пускатель

Основные сведения

Магнитный пускатель – это комплектный аппарат, предназначенный для дистанци-

онного управления электродвигателями и их защиты.

Магнитные пускатели классифицируют по таким признакам:

1. роду тока — переменного и постоянного тока;

2. возможности реверса — нереверсивные и реверсивные;

3. числу питающих сетей – одно- и двухсетевые.

Последние предусматривают автоматическое переключение на резервную сеть питания при обесточивании основной.

Нереверсивный магнитный пускатель

Конструктивно нереверсивный магнитный пускатель представляет собой металли-

ческую коробку, внутри которой располагаются следующие аппараты и устройства:

2. два тепловых реле;

3. кнопочный пост управления с двумя кнопками «Пуск» и «Стоп».

Исполнение корпуса пускателя брызго- или водозащищённое ( соответственно IP23

Схема пускателя ( рис.129 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. защиту электродвигателя.

Поясним действие схемы управления электродвигателем в такой последовательно-

1. подготовка схемы к работе;

3. действие защит.

Рис. 129. Принципиальная электрическая схема нереверсивного магнитного пускателя

Элементы схемы

На рис. 129 приняты такие обозначения:

в силовой части:

1. Л1, Л2, Л3 – линейные провода питающей сети;

2. КМ1…КМ3 – главные контакты линейного контактора КМ;

3. КК1, КК2 – нагревательные элементы тепловых реле;

4. М – обмотка статора асинхронного двигателя;

в схеме управления:

1. FU – предохранители, для защиты цепи катушки КМ от токов к.з.;

2. КК1, КК2 – размыкающие контакты тепловых реле;

Нереверсивная схема подключения магнитного пускателя

Приветствую вас, уважаемые читатели сайта elektrik-sam.info!

В этой статье мы подробно рассмотрим нереверсивную схему подключения магнитного пускателя для управления трехфазным асинхронным электродвигателем.

Также я для Вас записал видео с подробным описанием работы схемы, которое Вы можете просмотреть в конце этой статьи.

Вначале давайте рассмотрим схему подключения магнитного пускателя с катушкой на 220В.

Три фазы питающего напряжения подаются на клеммы асинхронного двигателя через:

— силовые контакты магнитного пускателя КМ;

— тепловое реле Р.

Обмотка катушки магнитного пускателя подключена с одной стороны к нулевому рабочему проводу N, с другой, через кнопочный пост к одной из фаз, в нашей схеме — к фазе С.

Кнопочный пост содержит 2 кнопки:

1) нормально-разомкнутую кнопку ПУСК ;

2) нормально-замкнутую — СТОП .

Нормально-разомкнутый вспомогательный контакт пускателя КМ подключен параллельно кнопке ПУСК .

Для защиты электродвигателя от перегрузок используется тепловое реле Р, которое устанавливается в разрыв питающих фаз. Вспомогательный нормально-замкнутый контакт теплового реле Р включен в цепь обмотки магнитного пускателя.

Рассмотрим работу схемы.

Включаем трехполюсный автоматический выключатель , его контакты замыкаются, питающее напряжение подается к силовым контактам пускателя и в цепь управления. Схема готова к работе.

Запуск.

Для запуска двигателя нажимаем кнопку ПУСК . Цепь питания обмотки магнитного пускателя замыкается, якорь катушки притягивается, замыкая силовые контакты КМ и подавая три питающих фазы на обмотки двигателя. Происходит запуск и двигатель начинает вращаться.

Одновременно с этим замыкается вспомогательный контакт пускателя КМ, шунтируя кнопку ПУСК .

Теперь, отпуская кнопку ПУСК , питание на обмотку пускателя продолжает поступать через его замкнутый вспомогательный контакт КМ. Двигатель запущен и продолжает работать.

Останов.

Чтобы остановить двигатель, нажимаем кнопку СТОП . Цепь питания обмотки пускателя разрывается. Якорь под действием пружины возвращается в исходное состояние, размыкая силовые контакты, обесточивая тем самым обмотки электродвигателя. Он начинает останавливаться.

Одновременно с этим размыкается вспомогательный контакт КМ в цепи питания обмотки пускателя.

После отпускания кнопки СТОП питание на обмотку не подается, поскольку вспомогательный контакт КМ разомкнут. Двигатель выключен и цепь готова к следующему запуску.

Защита от перегрузок.

Предположим, что двигатель запущен. Если по каким-то причинам ток нагрузки двигателя увеличится, биметаллические пластины теплового реле Р под действием повышенного тока начнут изгибаться, и приведут в действие механизм расцепителя. Он разомкнет вспомогательный контакт Р в цепи обмотки магнитного пускателя. Цепь обмотки пускателя разомкнется, силовые и вспомогательный контакты пускателя вернуться в исходное разомкнутое состояние, двигатель остановится.

Если катушка магнитного пускателя рассчитана на 380В, то схема подключения будет, как на рисунке ниже.

В этом случае, обмотка пускателя подключается к любым двум фазам, на схеме к фазам В и С.

Для дополнительной защиты цепи управления магнитным пускателем устанавливают предохранитель FU. В случае, например, межвиткового замыкания в катушке пускателя, плавкая вставка предохранителя перегорит, обесточив цепь управления.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео оказалось для Вас полезным, нажмите НРАВИТСЯ при просмотре на YouTube. Подписывайтесь на мой канал, и Вы первым узнаете о выходе новых интересных видео по электрике!

Рекомендую также прочитать:

Схема подключения реверсивного пускателя

Электромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

  • Реверсивные и нереверсивные пускатели
  • Возможности пускателей
  • Конструкция реверсивного магнитного двигателя
    • Особенности функционирования модели
    • Правила подключения
  • Реверсивное подключение трехфазного двигателя
    • Переключение системы при противоположном вращении
    • Изменение поворотного движения
  • Защита цепей от короткого замыкания
Читать еще:  Подключение датчиков движения

По сущности, электромагнитный пускатель — это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях — и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение — цепь размыкается. Каждый контакт находится в дугогасительной специальной камере.

Реверсивные и нереверсивные пускатели

Устройства бывают различных видов и выполняют все поставленные задачи.

Пускатели бывают двух типов:

  • нереверсивные;
  • реверсионные.

В реверсивном пускателе в одном корпусе существуют два единичных магнитных устройства, имеющих электрическое подсоединение между собой и прикреплённых в совокупном основании, но функционировать может только один из данных пускателей — или только первый, или только второй.

Реверсивный прибор вводится через естественно-закрытые блокировочные контакты, роль которых — устранить синхронное включение двух групп контактов — реверсивной и нереверсивной, для того чтобы не случилось межфазного замыкания. Определённые модификации реверсивных пускателей для предоставления этой же функции имеют защиту. Фазы питания возможно переключать по очереди для того, чтобы выполнялась главная функция реверсивного пускателя — перемена направления вращения электродвигателя. Изменился порядок чередования фаз — поменялось и направление ротора.

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Конструкция реверсивного магнитного двигателя

Распространение этих модификаций становится все обширнее с каждым годом, так как они помогают управлять асинхронным двигателем на дистанции. Это приспособление даёт возможность как включать, так и отключать мотор.

Корпус реверсивного пускателя состоит из таких следующих частей:

  1. Контактор.
  2. Тепловое микрореле.
  3. Кожух.
  4. Инструменты управления.

После того как поступила команда «Пуск», цепь замыкается. Далее ток начинает передаваться на катушку. В это же время действует механическое блокирующее приспособление, которое не дает запуститься ненужным контактам. Здесь нужно отметить, что механическая блокировка также закрывает и контакты клавиши, это дает возможность не удерживать её надавленной постоянно, а спокойно освободить. Еще одна важная часть состоит в том, что вторая клавиша этого устройства совместно с пуском всего аппарата будет размыкать электрическую цепь. Благодаря этому даже надавливание не дает практически никакого результата, формируя дополнительную безопасность.

Особенности функционирования модели

При нажатии клавиши «Вперед» действует катушка, и вводятся контакты. Вместе с этим выполняется операция пусковой клавиши постоянно разомкнутыми контактами устройства КМ 1.3, благодаря чему при непосредственном отпускании клавиши питание на катушку действует по шунтированию.

После введения первого пускателя размыкаются именно контакты КМ 1.2, что отключает катушку К2. В итоге при непосредственном нажатии в клавишу «Назад» ничего не происходит. Для того чтобы ввести мотор в обратную сторону необходимо надавить «Стоп» и обесточить К1. Все блокировочные контакты возвратиться могут в противоположное состояние, после этого возможно ввести мотор в противоположном направлении. Аналогично при этом вводится К2 и отключается блок с контактами. Происходит включение катушки 2 пускателя К1. К2 содержит силовые контакты КМ2, а К1- КМ1. К кнопкам для подсоединения от пускателя следует провести пятижильный провод.

Правила подключения

В любой установке, в которой требуется пуск электродвигателя в прямом и в противоположном направлении, непременно существует электромагнитный прибор реверсивной схемы. Подсоединение подобного элемента не считается столь непростой задачей, как может показаться на первый взгляд. К тому же нужность подобных задач возникает довольно часто. К примеру, в сверловочных станках, отрезных конструкциях либо же лифтах, если это не касается домашнего применения.

Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. Кроме того, для реализации переключения подобная установка оборудована клавишей. Подобная система, как правило, защищена от замыкания. Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов (КМ1.2 и КМ2.2), помещённых в позиции (КМ1 и КМ2).

Реверсивное подключение трехфазного двигателя

При работе выключателя QF1, одновременно все без исключения три фазы прилегают к контактам пускателя (КМ1 и КМ2) и находятся в таком состоянии. При этом первая стадия, представляющая собой питание для цепочки управления, протекая через аппарат защиты схемы управления SF1 и клавишу выключения SB1, непосредственно подаёт напряжение в контакты под третьим номером, который относится к SB2, SB3. При этом существующий контакт 13НО приобретает значение основного дежурного. Подобным способом система считается целиком готовой к работе.

Переключение системы при противоположном вращении

Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1. Уже после этого совершается введение нормально-разомкнутых контактов и выключение нормально-замкнутых. Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. При этом все без исключения три фазы поступают в нужной обмотке двигателя, который, в свою очередь, начинает формировать вращательное перемещение.

Созданная модель предусматривает наличие одного рабочего приспособления. К примеру, может функционировать только лишь КМ1 либо же, напротив, КМ2. Отмеченная цепь обладает действительными элементами.

Изменение поворотного движения

Теперь для придания противоположного направления перемещения вам следует поменять состояние силовых фаз, что удобно совершить при помощи переключателя КМ2. Все совершается благодаря размыканию первой фазы. При этом все без исключения контакты вернутся в исходное состояние, обесточив обмотку мотора. Эта фаза считается ждущим режимом.

Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. Это влияние вынуждает мотор вращаться в противоположном направлении. Теперь КМ2 будет ведущим, и пока не случится его разъединение, КМ1 будет не задействован.

Защита цепей от короткого замыкания

Как уже было заявлено прежде, прежде чем осуществить процесс перемены фазности, необходимо прекратить вращение мотора. Для этого в системе учтены нормально-замкнутые контакты. Поскольку при их нехватке невнимательность оператора привела бы к межфазному непосредственному замыканию, которое может случиться в обмотке мотора второй и третьей фазы. Предложенная модель считается оптимальной, поскольку допускает работу только лишь одного магнитного пускателя.

Схема подсоединения реверсивного магнитного пускателя считается ядром управления, так как много электрооборудования функционирует на реверсе, и непосредственно этот аппарат меняет направление верчения мотора.

Реверсивные схемы электромагнитных пускателей устанавливают там, где они на самом деле нужны, поскольку существуют подобные устройства, а обратный процесс недопустим и может вызвать серьёзную поломку автоматического характера.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты