Счетчик с трансформаторами тока
Схемы включения трехфазных электросчётчиков: варианты, методы
Для определения и контроля количество потребленной электроэнергии необходимо выполнить грамотное подключение счетчика. Рассмотрим существующие методы подключения трехфазных проборов учета.
Предполагаемая схема подключения счетчика будет определяться его типом. Сегодня существует несколько разновидностей трехфазных счетчиков:
- прямого подключения (счетчики 0.4кВ);
- косвенного подключения (через измерительные трансформаторы);
- полукосвенного включения.
- 1 Подключение трехфазного счетчика прямого подключения — без траснфмаорторов тока
- 2. Подключение трехфазного счетчика полукосвенного включения
- 1 Подключение трансформаторов тока «звездой»
- 2. Десятипроводная схема включения счетчика
- 3. Подключение трехфазного счетчика косвенного подключения
1 Подключение трехфазного счетчика прямого подключения — без траснфмаорторов тока
Приборы данного типа включаются в эклектическую сеть напрямую, по аналогии с однофазными счетчиками. Они обычно рассчитаны на небольшую пропускную мощность (ток до 100 А), отверстия под провода имеет сечение 25мм2 (или даже 16 мм2).
Процесс подключения проводов имеет вид:
- – ввод фазы А;
- – к нагрузке фазы А;
- – ввод фазы В;
- – к нагрузке фазы В;
- – ввод фазы С;
- – к нагрузке фазы С;
- — ввод нуля;
- – вывод нуля к нагрузке.
2. Подключение трехфазного счетчика полукосвенного включения
Данные приборы включаются в сеть через трансформаторы тока, благодаря чему появляется возможность использовать их в сетях с довольно высокими мощностями (до 60кВт). Используя такой способ учета, для определения расхода нужно разность показаний умножать на установленный коэффициент трансформации.
Существует несколько разновидностей подключения счетчиков полукосвенного подключения.
1 Подключение трансформаторов тока «звездой»
Процесс подключения проводов имеет вид:
- контакты 3, 6, 9, 10 – замыкаются и подключаются к нулевому проводу;
- контакты И2 – замыкаются, подключаются к клемме 11;
- 1 – к И1 фазы А;
- 4 – к И1 фазы В;
- 7 – к И1 фазы С;
- 2 – к Л1 фазы А;
- 5 – к Л1 фазы В;
- 8 – к Л1 фазы С.
Рисунок — Схема подключения «звездой»
2. Десятипроводная схема включения счетчика
Эта схема характеризуется улучшенной электробезопасностью, ввиду изоляции друг от друга цепей тока и напряжения.
3. Подключение трехфазного счетчика косвенного подключения
Эти устройства предназначены для выполнения учета электроэнергии на высоковольтных присоединениях (6-10кВ и более), подключение реализуется при помощи трансформаторов напряжения, тока.
Ниже представлены основные схемы подключения трехфазных счетчиков через трансформаторы тока и напряжения:
1) Схема включения трехэлементного счетчика в четырехпроводную сеть с заземленной нейтралью: (рисунок ниже)
2) Схема включения трехэлементного счетчика в четырехпроводную сеть. Три трансформатора тока, прямое подключение к напряжению:(рисунок ниже)
3) Схема включения трехэлементного счетчика к трехпроводной линии — два трансформатора тока, три трансформатора напряжения: (рисунок ниже)
При подключении трехэлементного счетчика по схеме №3:
- ток по фазе В вычисляется с вычетом тока нулевой последовательности;
- не используются токи прямой, обратной и нулевой последовательности основной частоты (симметричные составляющие);
- активная и реактивная мощности по фазе В вычисляются с вычетом тока нулевой последовательности из фазного тока;
- учет электрической энергии ведется с учетом вышеприведенных замечаний.
4) Схема включения двухэлементного счетчика к трехпроводной линии — два трансформатора тока, два трансформатора напряжения (рисунок ниже)
При подключении счетчика по схемам №4 и №5:
- не измеряется напряжение нулевой последовательности основной частоты (симметричные составляющие);
- не измеряются токи прямой, обратной и нулевой последовательности основной частоты (симметричные составляющие);
- мощности присоединения вычисляются по формулам;
- учет электрической энергии ведется с учетом вышеприведенных замечаний.
5) Схема подключения двухэлементного счетчика к трехпроводной линии – два трансформатора тока, прямое подключение по напряжению (рисунок ниже)
Внимание!: Возможность подключения по конкретной схеме должна быть указана в паспорте или руководстве на конкретный тип счетчика.
Установка счетчика через трансформаторы тока (схемы)
Современная жизнь человека невозможна без электричества. Оно используется во всех отраслях хозяйственной деятельности и в быту. Так как выработка электроэнергии сопряжена с немалыми затратами, для рационального ее использования применяют счетчики электрической энергии. Чтобы счетчик вел учет потребляемой энергии, требуется его установка, а подключается он посредством ввода в схему устройств, которые называются трансформаторами тока. Читайте также статью ⇒Как снять показания счетчика?
- Общее понятие
- Принцип действия
- Классификация
- Параметры
- Меры предосторожности
- Схемы подключения счетчика: пошаговое руководство
- Обзор популярных моделей и производителей
- Аналоги трансформаторов
- Распространенные ошибки при подключении
Общее понятие
Под этим словосочетанием понимается наличие специального аппарата, включающегося при необходимости преобразования тока. Конструкция предполагает последовательное включение первичной обмотки в цепь. Провода, входящие в состав вторичной обмотки, связываются с тем или иным электрическим прибором. К ней же можно подключить реле, связанное с защитой и автоматикой. Устройство является измерительным прибором, применяющимся в электроэнергетике. Все провода, составляющие обмотку, заключаются в изоляцию. Это в полной мере относится, как к первичной, так и вторичной обмотке.
При эксплуатации устройства величина потенциала, характерная для вторичной обмотки приближается к «земле». Такой эффект достигается при заземлении одного конца провода.
Трансформатор используется для преобразования тока посредством электромагнитной индукции без изменения его частоты
Посредством трансформаторов проводится учет и измерение тока с высоким напряжением. Вначале замерам подлежит первичное напряжение, размерной величиной для которого является ампер.
Совет №1: Необходимо проводить разграничение между измерительными трансформаторами тока и устройствами силового плана. Первые отличаются непостоянностью индукции, их действия определяются режимом эксплуатации. В связи с этим трансформатор тока можно отнести к универсальным устройствам.
Принцип действия
Работа всех подобных приборов основывается на следующем принципе. У любого устройства есть силовая первичная обмотка. В ней содержится определенное количество витков провода, через который проходит напряжение.
На своем пути току приходится преодолевать препятствие, связанное с полным сопротивлением. В непосредственной близости от катушки создается магнитный поток. Его улавливает магнитопровод. В отношении проходящего тока он должен быть расположен перпендикулярно. При этом процесс превращения магнитной энергии в электрическую будет сопровождаться минимальными потерями.
Таким же образом располагается и вторичная обмотка. При пересечении ее магнитным потоком активируется электродвижущая сила, что приводит к образованию электричества.
Требуется приложение достаточных усилий для преодоления сопротивления катушки и выходной нагрузки. Поэтому возникает снижение напряжения, которое существует во вторичной цепи.
Принцип функционирования трансформатора тока основывается на явлении электромагнитной индукции
Особенности функционирования трансформаторов определяются предназначением устройств:
- Трансформаторы для сварки действуют по принципу максимальной отдачи. Они обладают возможностью выдерживать значительные нагрузки, при которых имеет место высокое напряжение.
- Работа однофазного трансформатора связана с эффектом, который проявляет магнитный поток. При замыкании вторичной обмотки возникает электродвижущая сила. По закону Ленца наблюдается уменьшение величины магнитного потока. На первичную обмотку однофазных устройств осуществляется подача постоянного тока, потому уменьшения магнитного потока не происходит.
Классификация
Трансформаторы тока можно разделить в зависимости от целей использования. В соответствии с этим они применяются для измерения либо защиты. Классифицируются они и по ряду других принципов:
- Градация в зависимости от рода установки.
- Устройства, применяемые для эксплуатации во внешней среде.
- Местом использования являются закрытые помещения.
- Модели, которые встраиваются вовнутрь электроприборов.
Параметры
Как и любое иное электрооборудование, токовые трансформаторы сопряжены с определенными требованиями, которые предъявляются к ним:
- номинальное напряжение должно находиться в широком диапазоне;
- величина номинального тока, зависящего от первичной обмотки;
- вторичный ток, проходящий через вторичную обмотку;
- величина вторичной нагрузки, характеризующее сопротивление внешней второй цепи.
Все эти данные отражаются в паспорте устройства либо в виде приложенной таблицы.
Трансформаторы тока выпускаются в различных исполнениях в зависимости от назначения и условий эксплуатации
Меры предосторожности
Эксплуатация трансформаторов тока предполагает соблюдение определенных мер безопасности, поскольку она связана с определенным риском по отношению к здоровью человека:
- Существует возможность поражения электротоком, связанная с действием высоковольтного потенциала. Магнитопровод конструктивно выполняется из металла и отличается хорошей проводимостью. Если будут иметь место дефекты в изоляционном слое обмотки, то персоналу грозит возможность получения электротравмы. Для профилактики подобных случаев вывод вторичной обмотки подлежит заземлению.
- Работник связан с опасностью поражения высоковольтным потенциалом из-за разрыва вторичной цепи. Ее выводы имеют маркировку «И1» и «И2».
- Решения конструкторов при проектировании и производстве подобных устройств, преследует ряд конкретных задач. Если какой-либо параметр не удовлетворяет требованиям, цели достигают путем усовершенствования существующих конструкций. Новый образец еще недостаточно проверен временем, а поэтому, способен таить в себе некоторую опасность.
Схемы подключения счетчика: пошаговое руководство
Подключение может осуществляться по нескольким вариантами.
Случай с десятью проводами
Цепь питания разделена в соответствии с током и напряжением. Такой вариант наиболее безопасен. Подключение осуществляется в разрыве проводов фаз.
Подключение фазы А ведется к клемме Л1 первого трансформатора. К ней же ведется подключение клеммы 2 счетчика. Клемму 1 необходимо соединить с контактами И1 ТТ1. Контакты И2 обоих трансформаторов соединяются вместе. Сюда же присоединяется контакты 6 и 10 на счетчике. В завершении все это соединяется с нейтральной шиной. Необходимо подключение к нагрузке всех трансформаторов контактов Л2.
Подключаем остальные контакты по схеме:
- 3 на счетчике – И2 первого трансформатора;
- 4 – И1 второго трансформатора;
- 5 – фаза на входе – Л1 ТТ2;
- 7- И1 третьего трансформатора;
- 8 – фаза С – Л1 третьего трансформатора;
- 9 – И2 ТТ3.
Схема «звезда»
Проводов потребуется гораздо меньше. Необходимо соединение всех клемм И2 от каждого устройства в один узел. Затем они подключаются к клемме 11 на счетчике. Соединение воедино контактов 3, 6, 9 и 10 подключается к нулевому проводу. В остальном все идентично предыдущему варианту.
Совет №2: Можно выполнить подключение с использованием испытательной клеммной коробки. При этом способе проводится подключение эталонного счетчика. Нагрузка не отключается.
Схемы подключения
Используется несколько вариантов подключения электросчетчика через трансформатор. Ниже приведены наиболее часто использующиеся схемы.
Схема подключения предполагает наличие двух трансформаторов тока и двух трансформаторов напряжения
Схема подключения счетчика к трехфазной сети предполагает наличие двух трансформаторов тока
Схема подключения счетчика к трехфазной сети предполагает наличие трех трансформаторов тока
Обзор популярных моделей и производителей
Производством трансформаторов тока, через которые выполняется подключение к сети электросчетчиков, занимается множество компаний, в том числе с мировым именем. В таблице представлены наиболее востребованные модели с указанием их основных технических характеристик и ориентировочной стоимости на отечественном рынке
Аналоги трансформаторов
Существует огромное количество моделей токовых трансформаторов, которые, несмотря на различное обозначение, являются аналогами друг друга.
Подбор аналогичного устройства осуществляется посредством специальных таблиц, имеющихся на сайте каждого производителя. Например, трансформатор ТШ-0,66 может быть успешно заменен на устройства с маркировкой ТОП-0,66 или ТШП-0,66. А прибор ТПШЛ-10 — на трансформатор марки ТЛШ-10.
Распространенные ошибки при подключении
Часто встречающейся ошибкой при подключении счетчика через трансформатор является установка без заземления общей точки вторичных обмоток токовых трансформаторов и трансформаторов напряжения.
Еще одной нередкой ошибкой можно назвать выполнение работ без соблюдения норм ПУЭ. Особенно это касается требований, касающихся сечения жил токовых цепей. Их минимальное сечение для медного провода должно составлять от 2,5 мм. кв. Для цепей напряжения с медными жилами — от 1,5 мм. кв. Читайте также статью ⇒Выбивает автомат.
Как правильно считаются показания счетчика электроэнергии с трансформаторами тока
Счетчики электроэнергии до 100 А подключаются прямо к сети, при снабжении коммерческих объектов и больших предприятий дополнительно устанавливаются преобразователи напряжения и электротока. При расчетах за потраченную электроэнергию необходимо знать, как проводится подсчет эл. энергии через трансформаторы тока конкретной модели.
Виды и правила выбора преобразователя электротока
Трансформаторное оборудование, снижающее электроток (ТТ), классифицируется по различным характеристикам, в том числе коэффициенту преобразования. Это оборудование требуется, если объект потребляет мощности, которые в несколько раз превышают возможности обычного узла.
ТТ преобразует ток до уровня, позволяющего подключить для контроля обычные электросчетчики на одну или три фазы и создать систему защиты линии.
Классификация
По способу монтажа
ТТ по такому принципу делятся на:
- опорные (устанавливаемые на поверхности);
- проходные (прикрепленные к шинопроводу);
- шинные (прикрепленные к шине);
- встроенные в системы силового электротока;
- разъемные (установленные на кабелях).
По типу изоляции
Трансформатор электротока может быть:
- с эпоксидной смолой или специальным лаком;
- в пластиковом корпусе;
- с твердой изоляцией из фарфора, бакелита. твердого пластика;
- с вязким составом (маслом);
- наполненные газом;
- с масляно-бумажной изоляцией.
Какие параметры учитывать
Для расчета показаний электросчетчика с трансформаторами тока важен коэффициент трансформации. Он может быть одноступенчатый или каскадный (многоступенчатый). Последний вид ТТ отличается наличием нескольких вторичных обмоток и большим количеством витков в первичной обмотке.
Основное условие при выборе преобразователя – электроток вторичной обмотки должен быть такой же или меньше электротока, для которого предназначен электросчетчик.
Нежелательно покупать ТТ со слишком высоким уровнем трансформации. При подобном выборе придется устанавливать счетчик на приемный вход. Более популярны преобразователи с одним коэффициентом, не меняющие показание во время эксплуатации. При их использовании проблема, как считаются показания счетчика электроэнергии, подключенного через трансформаторы тока, решается проще.
Расчет электроэнергии по счетчику с трансформаторами тока можно провести только в том случае, если известен коэффициент трансформации. Он должен быть указан в техдокументации, с которой продавался ТТ, и на корпусе. При подозрениях на неточности в отображаемых цифрах коэффициент можно посчитать самостоятельно.
Чтобы рассчитать коэффициент, необходимо подключить преобразователь к электротоку, создающему короткое замыкание во вторичной обмотке, и измерить, сколько ампер в ней.
Коэффициент трансформации – соотношение значений поданного электротока и проходящего во вторичной обмотке.
Например, если короткое замыкание вызвали 150 А, на вторичной обмотке 5 А, действительный коэффициент 30. Это более точное значение, чем номинальное, которое определяется по номинальному электротоку первичной и вторичной обмотки. Результат расчета показаний электросчетчика с трансформаторами тока более точный.
Расчет показаний счетчика непрямого подключения
ТТ устанавливаются в сети, потребляющие сотни киловатт эл энергии. Принцип работы такого преобразователя основан на снижении величины электротока до значения, позволяющего подключить через него стандартный электросчетчик. Например, счетчик на 5 А, в сети 150 А, ТТ должен снизить показатель в 30 раз, то есть, коэффициент трансформации, используемый при подсчете расхода, тоже 30.
Как считать показания счетчика с трансформатором тока? Нужно их просто считать и отнять показатель, считанный в начале расчетного периода.
Потом полученная цифра умножается на коэффициент трансформации, указанный в технической документации или акте поставщика электроэнергии, рассчитанный самостоятельно. Это и есть ответ на вопрос, как рассчитать электроэнергию с трансформаторами тока.
Пример расчета
Рассмотрим, как рассчитать показания счетчика электроэнергии с трансформаторами тока с коэффициентом трансформации 100/5=20.
Например, на счетчике было значение, на 200 кВт превышающее цифру, списанную в начале периода.
При поиске ответа на вопрос, как рассчитать показания счетчика электроэнергии непрямого подключения с трансформаторами тока, важно учесть, что погрешность между реальным значением и указанным в техдокументации не должна превышать 2%. Показание должно быть снято с рабочего ответвления.
Решая вопрос, как посчитать показания счетчика электроэнергии, включенного в сеть с трансформатором тока, необходимо учитывать, что у любого прибора есть определенный срок службы. После того, как он закончился, не стоит надеяться, что считанные показания будут точные.
При покупке преобразователя необходимо проверить год и месяц выпуска. Это оборудование проверяется каждые 4 года, поэтому не должно быть просроченное.
Данные на шильдике изделия должны полностью совпадать с информацией в техпаспорте.
При выборе трехфазного ТТ необходимо учесть, что период со дня выпуска до пломбирования не должен превышать 12 месяцев. В противном случае возникнут дополнительные затраты на покупку другого преобразователя или госпроверку уже приобретенного.
Подключение электрического счетчика через измерительные трансформаторы
В сетях 380В, при организации систем учёта потребляемой мощности больше 60кВт, 100А применяются схемы косвенного подключения трехфазного электросчётчика через трансформаторы тока (сокращённо ТТ), чтобы измерять большую потребляемую мощность с помощью устройств учёта, рассчитанных на меньшую мощность, применяя коэффициент пересчёта показателей прибора.
Пару слов об измерительных трансформаторах
Принцип действия состоит в том, что ток нагрузки фазы, протекая через первичную, последовательно включённую обмотку ТТ, благодаря электромагнитной индукции создаёт ток во вторичной цепи данного трансформатора, в которую включена токовая катушка(обмотка) электрического счётчика.
Схема ТТ — Л1 , Л2 — входные контакты трансформатора, 1- первичная обмотка (стержень) , 2 — магнитопровод , 3 — вторичная обмотка , W1,W2 — витки первичной и вторичной обмотки, И1,И2 — выводы измерительных контактов
Ток вторичной цепи в несколько десятков раз (зависит от коэффициента трансформации) меньше тока нагрузки, протекающего в фазе, заставляет работать счётчик, показатели которого, при снятии параметров потребления, умножаются на данный коэффициент трансформации.
Трансформаторы тока, (их ещё называют измерительными трансформаторами) — предназначаются для преобразования высокого первичного тока нагрузки до удобных и безопасных значений для измерений во вторичной катушке. Рассчитаны она на рабочую частоту 50Гц, номинальный вторичный ток 5 А.
Когда имеют ввиду ТТ с коэффициентом трансформации 100/5, имеют ввиду, что рассчитан он на максимальную нагрузку 100А, измерительный ток 5 А, показания электросчётчика с таким ТТ надо умножать в 100/5 = 20 раз. Такое конструктивное решение избавляет от необходимости изготовления мощных электросчётчиков, чтобы сказалось на их дороговизне, защищает прибор от перегрузок и короткого замыкания (перегоревший ТТ легче заменить чем ставить новый счётчик).
Есть и недостатки такого включения — при малом потреблении измерительный ток может оказаться ниже стартового тока счётчика, то есть он будет стоять. Такой эффект часто наблюдался при включении старых индукционных счётчиков, имеющих значительное собственное потребление. В современных электронных приборах учёта такой недостаток сведён к минимуму.
При включении данных трансформаторов нужно соблюдать полярность. Входные клеммы первичной катушки имеют обозначение Л1 (начало, подключается фаза сети), Л2(выход, подключается к нагрузке). Клеммы измерительной обмотки обозначаются И1, И 2. На схемах И1 (вход) обозначается жирной точкой. Подключение Л1, Л2 осуществляется кабелем, рассчитанным на соответствующие нагрузки.
трансформаторы тока
Вторичные цепи, согласно ПУЭ, выполняются проводом с поперечным сечением не менее 2,5мм². Все соединения ТТ с клеммами счётчика следует выполнять маркированными проводниками с обозначением выводов, желательно различных цветов. Очень часто подключение вторичных цепей измерительных трансформаторов происходит через опломбированный промежуточный клеммник .
Благодаря такому включению возможна «горячая» замена счётчика без снятия напряжения и остановки электропитания потребителей, безопасный технический осмотр и проверка погрешности измерительных устройств, из за чего клеммник называют также испытательной коробкой.
Существует несколько схем подключения измерительных трансформаторов к трёхфазному электросчётчику, пригодному для такого использования. Приборы учёта, которые рассчитаны только на прямое, непосредственное включение в сеть, запрещено включать с ТТ, нужно обязательно изучить паспорт устройства, где указана возможность такого подключения, подходящие трансформаторы, а также рекомендуемая электрическая принципиальная схема, ей и нужно будет следовать при монтаже.
Важно! Не допускается подключение ТТ с разным коэффициентом трансформации на один счётчик.
Подключение
Прежде нужно рассмотреть схему расположений контактов самого счётчика, принцип работы данных устройств учёта одинаков, они имеют схожее расположение контактных клемм, соответственно можно рассмотреть типичную схему такого подключения, контакты счётчика слева направо, для фазы А:
Контактные клеммы эл.счетчика
- Контакт питания цепи ТТ (А1) ;
- Контакт для цепи напряжения (А);
- Выходной контакт подключается на ТТ (А2);
Такая же очерёдность соблюдается для фазы В: 4, 5, 6, и для фазы С: 7, 8, 9.
10 — нейтраль. Внутри счётчика, окончания измерительных обмоток напряжения соединены с нулевым контактом.
Наиболее простой для понимания является схема с тремя ТТ с раздельным подключением вторичных токовых цепей.
На зажим Л1 ТТ подаётся фаза А от входного автомата сети. С этого же контакта (для удобства монтажа) подключается клемма №2 катушки напряжения фазы А на счётчике.
Л2, окончание первичной обмотки ТТ является выходом фазы А, подключается к нагрузке в распределительном щите.
И1 начала вторичной обмотки ТТ подключается к контакту №1 начала токовой обмотки электросчётчика фазы А1;
И2, окончание вторичной обмотки ТТ подключается к клемме №3 окончания токовой обмотки счётчика фазы А2.
Аналогично, осуществляется подключение ТТ для фаз В, С, как на схеме.
схема подключения электросчетчика
Согласно ПУЭ выходы вторичных обмоток И2 соединяются и заземляются (полная звезда), но в паспортах к электросчётчикам этого требования может не быть, и при вводе в эксплуатацию, если принимающая комиссия будет настаивать, то заземляющий шлейф придётся снять.
Все монтажные работы следует производить только согласно одобренного проекта.Схема с совмещёнными цепями тока и напряжения применяется редко из-за большей погрешности и невозможности выявления обмоточного пробоя в ТТ.
В схемах с изолированной нейтралью применяется схема с двумя измерительными трансформаторами (неполная звезда), она чувствительна к обрыву фазы.
Важно ! Вторичные цепи ТТ должны быть всегда нагружены, они работают в режиме близкому к короткому замыканию, при их разрыве теряется компенсирующее воздействие индукции тока вторичной обмотки, что приводит к разогреву магнитопровода. Поэтому, при горячей замене электросчётчика замыкают И1, И2 на клеммнике.
Выбор ТТ по коэффициенту трансформации осуществляется согласно ПУЭ 1.5.17, где указывается, что при максимальной нагрузке потребления ток вторичной цепи ТТ должен быть не меньше 40 % номинального тока электросчётчика, а при минимальной нагрузке потребления не меньше 5%. Обязательным является правильное чередование фаз: А, В, С, которое измеряется фазометром или фазоуказателем.
Как выбрать трансформаторы тока для подключения расчетных счетчиков
Счетчики для расчетов за потребляемую электроэнергию между энергоснабжающей организацией и потребителями следует устанавливать на границе раздела сети по балансовой принадлежности и эксплуатационной ответственности между энергоснабжающей организацией и потребителем. Число счетчиков на объекте должно быть минимальным и обосновано принятой схемой электроснабжения объекта и действующими тарифами на электроэнергию для данного потребителя. Расчетные счетчики у арендаторов, находящихся в жилых, общественных и других зданиях и обособленных в административно-хозяйственном отношении, надо устанавливать раздельно для каждого самостоятельного потребителя (организации, домоуправления, ателье, магазина, мастерской, склада и т. д.).
Коэффициент трансформации трансформаторов тока следует выбирать по расчетной присоединяемой нагрузке с учетом работы установки в аварийном режиме. Завышенным по коэффициенту трансформации считается такой трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика (номинальный ток счетчика — 5 А).
В зависимости от величин сопротивления потребителей вторичной цепи Z 2, Ом, и вторичной нагрузки трансформатора тока S2, ВА, один и тот же трансформатор тока может работать в различных классах точности. Для обеспечения достаточной точности показаний приборов и действия аппаратов защиты, подключенных к трансформатору тока, необходимо, чтобы величина Z2 не выходила за пределы номинальной нагрузки трансформатора тока.
Трансформаторы тока имеют токовые ΔI и угловые погрешности δ . Токовая погрешность, проц., по приведенному соотношению учитывается в показаниях всех приборов:
где kном — номинальный коэффициент трансформации; I1 и I2 — ток соответственно первичной и вторичной обмоток трансформатора.
Угловая погрешность определяется углом δ между векторами тока I1 и I2 и учитывается только в показаниях счетчиков и ваттметров.
Трансформаторы тока имеют следующие классы точности: 0,2; 0,5; 1; 3; 10, что соответствует величинам токовых погрешностей, проц. Класс точности трансформаторов тока должен быть для счетчиков коммерческого учета — 0,5; для электроизмерительных приборов— 1; для реле токовых защит — 3; для лабораторных приборов — 0,2.
Пример выбора трансформаторов тока для подключения счетчика.
Расчетный ток присоединения в нормальном режиме — 90 А, в аварийном — 126 А.
Выбирают трансформаторы тока с коэффициентом трансформации n т = 150/5 исходя из нагрузки в аварийном режиме.
Проверка. При 25%-ной нагрузке ток в первичной цепи составляет I1 = ( 90 х 25)/100 = 22,5 А.
Ток во вторичной цепи (при коэффициенте трансформации n т = 150 : 5 = 30) составит
I 2 = I1/nt = 22 , 5/30 = 0,75 А.
Трансформаторы тока выбраны правильно, так как I 2 > I н счетчика, т. е. 0,75 > 0,5.
Сечение жил проводов или кабелей от трансформаторов тока до счетчиков должно быть не менее: медных — 2,5, алюминиевых — 4 мм2. Максимальное сечение жил проводов и кабелей, которые возможно подключить к клеммам счетчика, не должно превышать 10 мм2.
При выборе трансформаторов тока к расчетным счетчикам рекомендуется использовать данные из ПУЭ (таблица «Выбор трансформаторов тока»). До приборов учета, смонтированных на вводе в целях безопасной установки, проверки и замены счетчиков и трансформаторов тока в электроустановках при наличии двух питающих линий (вводов) и двух распределительных сборок, имеющих коммутационные аппараты для их соединения (секционные рубильники, АВР и др.), до приборов учета, смонтированных на вводе, должны быть установлены отключающие аппараты, а после приборов учета — аппараты, обеспечивающие разрыв цепи со стороны распределительных сборок.
Правильный выбор трансформатора тока для счетчика
- Разновидность устройств
- Правила выбора
Разновидность устройств
При выборе трансформатора нужно учитывать его место расположение (закрытые или открытые распределительные установки, встраиваемые системы), а также конструктивные особенности исполнения (проходные, шинные, опорные, разъемные).
Проходной ТТ устанавливают в комплексных РУ и используют в качестве проходного изолятора. Опорные используют для установки на ровной поверхности. Шинный ТТ устанавливается непосредственно на токоведущие части. В роли первичной обмотки трансформатора выступает участок шины. Встроенные модели как элемент конструкции, устанавливаются в силовые трансформаторы, масляные выключатели и пр. Разъемные ТТ выполнены разборными для быстрой установки на жилы кабеля, без физического вмешательства в целостность электрических сетей.
Кроме того, разделение также проходит по типу используемой изоляции:
- литая;
- пластмассовый корпус;
- твердая;
- вязкая компаудная;
- маслонаполненная;
- газонаполненная;
- смешанная масло-бумажная.
И различают по спецификации и сфере применения:
- коммерческий учет и измерения;
- защита систем электроснабжения;
- измерения текущих параметров;
- контроль и фиксация действующих значений;
Также различаются трансформаторы по напряжению: для электроустановок до 1000 Вольт и выше.
Правила выбора
При выборе трансформатора его напряжение не должно быть меньшим, чем номинальное напряжение счетчика.
U ном ≥ U уст
Аналогично поступаем при выборе ТТ по току, который должен быть равен или больше максимального тока контролируемой установки. С учетом аварийных режимов работы.
I ном ≥ I макс.уст
В ПУЭ описаны правила и нормативные требования к устройствам коммерческого учета счетчиками, а также уделено не мало внимания трансформаторам тока и нормам расчетных мощностей. Детально ознакомится можно в пункте ПУЭ 1.5.1 (Глава 1.5).
Помимо этого существуют следующие правила выбора трансформатора тока для счетчика:
- Длина и сечение проводников от ТТ к узлу учета должны обеспечивать минимальную потерю напряжения (не более 0.25% для класса точности 0.5 и 0.5% для трансформаторов точностью 1.0). Для счетчиков, используемых для технического учета, допускается падение напряжения 1.5% от номинального.
- Для систем АИИС КУЭ трансформаторы должны иметь высокий класс точности. Для установки в такие системы используют ТТ класса S 0.5S и 0.2S, позволяя увеличить точность учета при минимальных первичных токах.
- Для коммерческого учета нужно выбрать класс точности ТТ не более 0.5. При использовании счетчика точностью 2.0 и для технического учета, допускается применение трансформатора класса 1.0.
- Выбор ТТ с завышенной трансформацией допускается, если при максимуме тока нагрузки, ток в трансформаторе не меньше 40% от I ном электросчетчика.
- При расчете количества потребленной энергии необходимо учитывать коэффициент преобразования.
- Расчет параметров ТТ производится в зависимости от сечения проводника и расчетной мощности.
По таблице ниже, согласно получившимся расчетным параметрам выбираем ближайший ТТ:
При заключении договора с энергоснабжающей организацией, в случае когда для производства учета необходима установка трансформаторов тока, для организации узла учета, выдаются технические условия, в которых указано модель узла учета а также тип ТТ, номинал автоматических выключателей место их установки для конкретной организации. В результате самостоятельные расчеты ТТ производить не нужно.
Напоследок советуем читателям https://samelectrik.ru просмотреть полезное видео по теме:
Надеемся, теперь вам стало понятно, как выбрать трансформаторы тока для счетчиков и какие варианты исполнения ТТ бывают. Надеемся, предоставленная информация была для вас полезной и интересной!
Наверняка вы не знаете:
Подключение счетчика через трансформаторы
Общие требования
Схемы подключения счетчиков через трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.
При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.
При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.
Счетчик трансформаторного включения имеет 10 либо 11 выводов:
Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.
В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.
Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)
Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?
Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:
ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.
Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!
Подключения счетчика через трансформаторы тока
Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:
Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.
Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:
2.1 Десятипроводная схема
Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:
Фактически десятипроводная схема будет иметь следующий вид:
Преимущества десятипроводной схемы:
- Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
- Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
- Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.
Недостатки десятипроводной схемы:
- Большой расход проводника, для сборки вторичных цепей учета.
2.2 Семипроводная схема
Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:
Фактически семипроводная схема будет иметь следующий вид:
Примечание: Обратите внимание в принципиальной схеме закорочены и заземлены выводы «И2» трансформаторов тока, в то время как в фактической семипроводной схеме закорочены и заземлены выводы «И1». Для правильной работы схемы учета не имеет значения какую группу выводов заземлять (И1 или И2), главное что бы заземлены они были только с одной стороны, поэтому оба варианта схем верны.
Преимущества семипроводной схемы:
- Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
- Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
- Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.
Недостатки семипроводной схемы:
- Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.
2.3 Схема с совмещенными цепями
Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.
При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту И1.
Фактически схема с совмещенными цепями будет иметь следующий вид:
Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.
3. Подключение счетчика через трансформаторы тока и напряжения
В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.