Расчет электрического тока по мощности: формулы, онлайн расчет, выбор автомата

Содержание

Расчет тока трехфазного двигателя

Расчет электрического тока по мощности: формулы, онлайн расчет, выбор автомата

  • Формула расчета мощности электрического тока
  • Подбираем номинал автоматического выключателя
  • Онлайн расчет мощности тока для однофазной и трехфазной сети

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

а для трехфазной сети: I = P/(1,73*U*cos φ),

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

Читать еще:  Советы по выбору электросчетчика для дома

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Номинальный ток асинхронных двигателей

Подавляющее большинство электродвигателей, используемых в промышленности, относятся к трехфазному асинхронному типу. Для питания таких устройств необходима промышленная трехфазная сеть переменного тока, обеспечивающая сетевое напряжение заданной частоты и напряжения. Высокая популярность асинхронных электродвигателей обусловлена дешевизной, простотой изготовления и механической прочностью данных устройств. Кроме того, изменяя схему подключения обмоток (звезда или треугольник) можно подключать двигатель к сетям различного напряжения (обычно используются комбинации 220/380 и 127/220В).

Высокий стартовый ток – главный недостаток асинхронного электродвигателя

Однако несмотря на множество неоспоримых преимуществ, асинхронные двигатели имеют минусы, среди которых одним из наиболее значительных является достаточно большой пусковой ток электродвигателя данного типа. Особенно заметен этот недостаток в асинхронных устройствах с короткозамкнутым ротором. Такие двигатели следует с осторожностью применять, в тех системах, для которых требуется значительный пусковой момент, который может привести к превышению номинального значения силы тока (Iн).

Для большинства асинхронных электродвигателей допустимо кратковременное превышение значение Iн, которое может произойти в момент пуска. Так, в момент запуска, допускается шестикратное превышение значения номинального тока при условии, что оно будет длиться не более 5 секунд. В случае, если в некотором режиме номинальный ток превышается не более чем в два раза, допускается увеличить время работы устройства в этом режиме до 15 секунд.

Расчет номинального значения тока асинхронного электродвигателя

Номинальный ток электродвигателя, при котором возможна его длительная работа, связан с номинальной мощностью устройства и его КПД следующим выражением: Iн=1000*Pн/(Uн*cosφ√η), где Рн – мощность, Uн – номинальное напряжение, которым питается электродвигатель, η – КПД, а cosφ – коэффициент мощности двигателя.

Отсюда можно сделать важный вывод, который состоит в том, что при уменьшении U (например при переключении устройства из сети в 220 В сеть 127 В), увеличивается ток двигателя, который может превысить номинальное значение. А длительная работа двигателя на токе I>Iн может привести не только к его повреждению, но и к возгоранию. Поэтому, используемые в системе с электрическим двигателем предохранительные устройства должны быть подобраны так, чтобы предотвратить продолжительную работу при токе I>Iн.

Онлайн калькулятор электрика

формула справедлива для симметричной нагрузки, т.е. каждая фаза в трехфазной сети имеет одинаковый ток потребления, что реально на практике встречается редко.
Где,
P — электрическая мощность нагрузки, Вт;
U — фактическое напряжение в сети, В (220 или 380);
cosφ — коэффициент мощности, в пределах от 0,95 до 0,8. Равен 1,0 если нет реактивной нагрузки (в первую очередь в домашних условиях это работающие электродвигатели, люминесцентные лампы с индуктивными дросселями, трансформаторы), чем мощнее двигатель тем меньше коэффициент мощности.

Онлайн калькулятор расчета тока в цепи в однофазной и трехфазной цепи.

Выбор сечение провода

Онлайн калькулятор для расчета диаметра провода кабеля по сечению
Введите величину сечения провода, мм 2 :

Расчет сечения провода

Онлайн калькулятор для вычисления сечения провода по диаметру

Вы можете вычислить сечение одножильного провода по диаметру с помощью онлайн калькулятора.

Онлайн калькулятор для вычисления сечения провода по диаметру
Введите диаметр провода, мм:

Как вычислить сечение многожильного провода

Многожильный провод, чем он отличается от одножильного? В принципе ничем, несколько одножильных проводов свитые вместе, а поэтому вычислить сечение одножильного провода и помножив на количество проводов получим сечение многожильного провода.
Рассмотрим на примере:
Имеется в распоряжении многожильный провод, сплетенный из 12 жил, диаметр одножильного провода 0,4 мм. Рассчитываем сечение жилы: 0,4мм х 0,4мм х 0,785 = 0,1256, округляем и получаем 0,126 мм 2 . Сечение многожильного провода 0,126 мм 2 х 12 = 1,5 мм 2 .
Заходим в таблицу и определяем, что такой провод способен выдержит ток 8 Ампер.

При желании можно определить сечение многожильного провода, замерив общий диаметр кабеля, так как между проводниками имеется пространство, то с помощью коэффициента 0,91 мы приблизительно рассчитаем общее сечение, что нам будет достаточно этой точности.
К примеру, замерив диаметр многожильного провода, мы получили 5 мм, рассчитываем:
5,0 мм х 5,0 мм х 0,785 = 19,625 мм 2 , далее 19,625 мм 2 умножаем на 0,91 получаем 17,85 2 . По таблице видим, что ток на который рассчитан провод более 63 А.

Онлайн калькулятор для определения сечения многожильного провода
Введите диаметр одной жилы, мм:
Количество жил в проводе:

Вот еще один простой калькулятор расчета.
Для вычисления потребляемого тока применяем известную формулу, для этого делим мощность прибора (Вт) на напряжение (вольт) , после деления результат получается в амперах.
Чайник потребляет 1200 Вт от сети 220 вольт, вычисляем 1200 дели на 220 получаем ток 5,45 А.

Онлайн калькулятор для определения величины тока по потребляемой мощности
Потребляемая мощность, Вт:
Напряжение питания, В:

Для вычисления необходимо вписать оба значения, иначе программа не поймет и выдаст соответствующее сообщение.

Онлайн расчет характеристик трехфазных электродвигателей

1. Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2. Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Читать еще:  Пример светотехнического расчета по методу коэффициента использования: подробный разбор формулы

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

3. Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

4. Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Переходные процессы и дисбаланс напряжения

К проблемам систем энергоснабжения, которые наиболее часто наносят ущерб промышленным предприятиям, относятся провалы и выбросы напряжения, гармоники, переходные процессы, а также дисбаланс напряжения и тока.

В сбалансированной трехфазной системе напряжения фаз должны быть одинаковы или приблизительно равны друг другу. Измерение дисбаланса позволяет выявить разницу между фазными напряжениями. Дисбаланс напряжения — это мера разности напряжений между фазами в трехфазной системе. Это одна из причин снижения производительности и сокращения срока службы трехфазных электродвигателей.

Переходные процессы могут оказывать серьезное воздействие на электродвигатели. Например, пробой изоляции обмотки электродвигателя может привести к дорогостоящему преждевременному отказу электродвигателя и незапланированному простою.

Проверка переходного напряжения в электродвигателях

У переходного напряжения (временные нежелательные всплески или скачки напряжения в электрической цепи) может быть любое количество источников внутри или за пределами промышленного предприятия.

Включение и выключение расположенного рядом оборудования, блоки конденсаторов коррекции коэффициента мощности или даже погодные условия на отдаленных участках могут создавать переходное напряжение в распределительных системах. Переходные напряжения, которые отличаются по амплитуде и частоте, могут привести к разрушению или пробою изоляции в обмотках электродвигателя.

Поиск источника переходных процессов представляет собой сложную задачу, поскольку такие процессы происходят нерегулярно, а их признаки могут проявляться по-разному. Например, переходные процессы могут проявиться в управляющих кабелях и необязательно причинят вред непосредственно оборудованию, однако могут нарушить его работу.

Для обнаружения и измерения переходных напряжений можно использовать трехфазный анализатор качества электроэнергии с функцией измерения переходных процессов, такой как анализатор качества электроэнергии и работы электродвигателей Fluke 438-II. Функция измерения переходных процессов этого прибора имеет настройку напряжения, превышающую стандартное напряжение на 50 В. На дисплее измерительного прибора отображается потенциально проблемное напряжение, превышающее заданное на 50 В, т. е. переходное напряжение.

Если при первоначальном измерении переходные напряжения не обнаружены, рекомендуется измерять и регистрировать показатели качества электроэнергии с привязкой ко времени с помощью усовершенствованного промышленного регистратора качества электроэнергии. Примером такого прибора является трехфазный регистратор качества электроэнергии Fluke 1750.

Почему возникает дисбаланс напряжения?

Несбалансированность трехфазной системы может привести к снижению производительности или преждевременному выходу из строя трехфазных электродвигателей и других трехфазных потребителей из-за воздействия следующих факторов:

  • Механические напряжения в электродвигателях, вызванные более низким по сравнению с номинальным крутящим моментом на выходе
  • Повышенный ток в электродвигателях и в трехфазных выпрямителях
  • Ток дисбаланса будет поступать в нейтральные провода трехфазных систем с соединением по схеме «звезда»

Дисбаланс напряжения на клеммах двигателя приводит к существенному дисбалансу тока, который может быть в 6–10 раз больше дисбаланса напряжения. Из-за несбалансированных токов возникают пульсации момента, повышенная вибрация и механические напряжения, увеличиваются потери, а также перегрев двигателя. Дисбаланс напряжения и тока также может привести к проблемам при техобслуживании, которые связаны с ослабленными соединениями и износом контактов.

Дисбаланс может возникнуть в любой точке распределительный системы. Все фазы, подключенные к щиту, должны быть равномерно нагружены. Если нагрузка на одной из фаз будет больше, чем на остальных, напряжение на этой фазе будет ниже. У трансформаторов и трехфазных двигателей, запитанных от такого щита, могут наблюдаться повышенный нагрев, нехарактерные звуки и шумы, чрезмерная вибрация и даже преждевременный выход из строя.

Методика расчета дисбаланса напряжения

Расчеты, необходимые для определения дисбаланса напряжения, довольно просты. Результат выражается в процентах дисбаланса и может быть использован для определения следующих шагов в программах диагностики и ремонта двигателей. Расчет осуществляется в три этапа:

  1. Определение среднего значения напряжения или тока
  2. Вычисление наибольшего отклонения напряжения или тока
  3. Деление максимального отклонения на среднее значение напряжения или тока с последующим умножением на 100 % дисбаланс = (макс. отклонение от среднего напряжения или тока/среднее значение напряжения или тока) × 100

Расчет дисбаланса вручную позволяет определить мгновенное значение дисбаланса тока или напряжения. Анализатор работы электродвигателей, такой как Fluke 438-II, отображает дисбаланс напряжения и тока в режиме реального времени, а также любые изменения дисбаланса.

Расчет характеристик трехфазного асинхронного двигателя

В электроприводе производственного агрегата используется асинхронный двигатель трехфазного тока с короткозамкнутым ротором. Двигатель работает в номинальном режиме при линейном напряжении Uл = 380 В и при промышленной частоте f = 50 Гц.
Используя данные электродвигателя, выбрать сечение питающих проводов и номинальный ток плавких вставок предохранителей. Построить график зависимости вращающего момента от скольжения М = f(s), предварительно вычислив номинальное и максимальное значения момента, пусковой момент, а также значения вращающего момента при скольжении, равном 0,2; 0,4; и 0,6. Смотреть видео: асинхронный двигатель Исходные данные:
Iпуск/Iном = 6,5; Ммакс/Мно = 2,0; КПДном = 0,82; сosjном = 0,83;
Тип двигателя 4А80А2У3; Рном = 1,5 кВТ; Sном = 7,0 %.

  • Определим номинальный ток двигателя:
Читать еще:  Подключение и замена электросчётчиков в АО; Мосэнергосбыт


По найденному значению тока из табл. Приложения 2 выбираем сечение питающего провода для двигателя. При номинальном токе 3,35 А подойдут провода сечением 2,5 кв. мм трехжильные медные с резиновой или полихлорвиниловой изоляцией или трехжильные алюминиевые провода с резиновой или полихлорвиниловой изоляцией.

  • Определим величину пускового тока из известного по условию задачи соотношения Iпуск/Iном = 6,5:

  • Определим номинальный ток плавкой вставки:

Если принять, что двигатель работает с тяжелыми условиями пуска (большая длительность разгона, частые пуски):

Из ряда стандартных плавких вставок на номинальные токи 6, 10, 15, 20, 25, 30, 50, 60, 80, 100, 120, 150 А выбираем вставку на номинальный ток 15 А.

  • Определим частоту вращения магнитного поля двигателя:

В обозначении двигателя (4А80А2У3) после буквы «А» указано количество полюсов, количество пар полюсов вдвое меньше, т.е. в данном случае Р = 1.

  • Определим частоту вращения ротора двигателя:

  • Определим вращающий момент при номинальном режиме работы:

  • Из заданной по условию задачи перегрузочной способности двигателя (Ммакс/Мно = 2,0) определим максимальный вращающий момент:

  • Определим величину скольжения, при которой момент наибольший:

Из двух полученных значений по условию устойчивой работы двигателя выбираем .

  • Определим пусковой момент двигателя (при S = 1):

  • Определим момент при S = 0,2:

  • Момент при S = 0,4:

  • Момент при S = 0,6:

  • Построим график зависимости вращающего момента от скольжения:

Пример расчета тока кз с учетом подпитки двигателей 6 кВ

В данном примере требуется определить ток в месте к.з с учетом подпитки от синхронных электродвигателей для схемы электроснабжения 6 кВ представленной ниже.

Обращаю ваше внимание, что ток к.з. в данном примере рассчитывается, когда РПН силового трансформатора ТДН, находиться в среднем положении, крайние положения РПН: «минусовой» и «плюсовой» — не рассматриваются.

1. Iкз. = 10 кА –ток к.з. на шинах 110 кВ;

2. Характеристики трансформатора ТДН-16000/110-У1:

  • Sном.тр. = 16 МВА – номинальная мощность трансформатора;
  • Uном.вн =115 кВ — номинальное напряжение стороны ВН;
  • Uном.нн = 6,3 кВ — номинальное напряжение стороны НН;
  • Uк.вн-нн=10,5 % — напряжение короткого замыкания трансформатора, соответствующее среднему положению РПН, принимается по таблице 6 ГОСТ 12965-85;

3. Характеристики синхронных двигателей серии СТД представлены в таблице 3.10.14 [Л3, с.565]:

В таблице 3.10.14 кратность пускового тока обозначено как Iп/Iном., в технической литературе обозначено как kп. В дальнейшем, чтобы не запутаться, кратность пускового тока будет приводиться как в формулах технической литературы, а именно – kп.

  • kп = 5,58 – кратность пускового тока для двигателя СТД-800-23УХЛ4;
  • kп = 6,7 – кратность пускового тока для двигателя СТД-1000-23УХЛ4;
  • Sном = 935 кВА = 0,935 МВА– для двигателя СТД-800-23УХЛ4;
  • Sном = 1160 кВА = 1,160 МВА– для двигателя СТД-1000-23УХЛ4;

Если же в паспорте не указано Sном, можно рассчитать по формуле: Sном = Pном/cosφ.

Составляем расчетную схему и схему замещения (см.рис.1 а, б), учитывая из всех присоединений 6,3 кВ, только синхронные двигатели, непосредственно связанные с местом к.з. (точка К1). Связано это с тем, что электродвигатели напряжением выше 1000 В являются дополнительным генерирующим источником при условии, если они связаны с местом к.з. непосредственно, кабельными линиями, токопроводами или через линейные реакторы [Л1, с.19].

Определяем сопротивления элементов схемы замещения.

1. Определяем сопротивление для энергосистемы на напряжение 115 кВ, по выражению 54 [Л1, с.43]:

2. Определяем сопротивление двухобмоточного трансформатора в среднем положении РПН по выражению 25 [Л2, с.27]:

  • Uк = 10,5% — напряжение короткого замыкания трансформатора, %;
  • Uном = 115 кВ – номинальное напряжение трансформатора в среднем положении РПН, кВ;
  • Sном = 16000 кВА – номинальная мощность трансформатора, кВА;

3. Определяем сверхпереходное сопротивление для электродвигателя серии СТД-800 в относительных единицах (о.е) по выражению 13 [Л4, с.15]:

4. Определяем сверхпереходное сопротивление для электродвигателя серии СТД-1000 в относительных единицах (о.е) по выражению 13 [Л4, с.15]:

5. Переведем значение сверхпереходного сопротивления электродвигателей из относительных единиц в Ом, по выражению 8 [Л4, с.11]:

Подробно расчет сопротивлений синхронных электродвигателей выше 1000 В рассмотрен в статье: «Расчет сопротивлений электродвигателей выше 1000 В» .

6. Определяем суммарное сопротивление электродвигателей для II секции. Как видно из схемы замещения (см. рис.1б) сопротивления xдв1 и xдв2 соединены параллельно. Для 2-х параллельных ветвей сложение ветвей выполняется по выражению 23 [Л4, с. 23]:

Основные формулы преобразования схем представлены в таблице 3.1 РД 153-34.0-20.527-98.

7. Если кратность пускового тока электродвигателя вам неизвестна, тогда сверхпереходное сопротивление Х”d* определяется по таблице 5.2 [Л4, с.14 — 15].

Для сравнения результатов расчетов, определим сопротивление электродвигателей на II секции, приняв что Х”d* = 0,2 о.е:

где: Sном.Σ = 2*0,935 + 2*1,160 = 4,19 МВА– суммарная мощность электродвигателей на секции, МВА;

Как мы видим результаты расчетов отличаются, но я бы не сказал, что уж так сильно.

8. Определяем суммарное сопротивление системы до точки к.з:

9. Определяем ток трехфазного короткого замыкания по выражению 52 [Л1, с.42]:

10. Значение тока кз приведем к действующему напряжению 6,3 кВ, согласно [Л2, с.14]:

11. Определяем сверхпереходное ЭДС выраженное в кВ по выражению 11 [Л4, с. 14]:

где: E”d* = 1,1 (о.е) — сверхпереходное ЭДС в отн. ед.ном, принимается по таблице 5.2 [Л4, с.14].

12. Определяем ток к.з. от электродвигателей по выражению 50 [Л1, с.42]. В формуле 50 сверхпереходное ЭДС обозначается как E”, в практических расчетах индекс d опускается. Поэтому во избежание путаницы из-за разного обозначения эл. величин в различной технической литературе, принимаем что E”d обозначается E”.

13. Определяем суммарный ток к.з. на секции:

  1. Беляев А.В. Как рассчитать ток короткого замыкания. Учебное пособие. 1983 г.
  2. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г.
  3. Справочная книга электрика. В.И. Григорьева. 2004 г.
  4. Расчеты токов короткого замыкания для релейной защиты. Учебное пособие. Часть первая. И.Л.Небрат 1996 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

В данной статье речь пойдет о расчете активного и индуктивного сопротивления асинхронного двигателя до.

В этой статье я хотел бы рассказать, как рассчитывается напряжение при регулировании ответвлений.

Содержание 1. Определение сопротивлений питающей энергосистемы2. Определение сопротивлений.

Содержание 1. Общая часть2. Исходные данные3. Токовая отсечка4. Защита от перегрузки5.Защита от повышения.

Содержание 1. Определение сопротивлений питающей энергосистемы2. Определение сопротивлений.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Контракт Бак ЛТД
Добавить комментарий