Kontakt-bak.ru

Контракт Бак ЛТД
25 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита от перенапряжения

Защита от скачков напряжения и обрыва нуля

Добрый день. У меня в старой квартире /загородном доме недавно на ГРЩ произошел обрыв «ноля»/ был скачок напряжения. Вся техника в квартире сгорела. Слава богу, у соседей тоже.

Данный диалог с различными вариациями в офисе нашей компании раздается достаточно часто. Для того, чтобы Вы не произнесли его в один прекрасный день, предлагаем ознакомиться с некоторыми типовыми устройствами защиты от скачков напряжения, которые можно использовать для защиты перепадов напряжения

1. Ограничители перенапряженией –узип – предназначены для защиты оборудования от импульсных скачков перенапряжений, которые могут возникнуть например вследствие близкого удара молний в линию электропередач или близкой работы устройств с большой индуктивностью..

В основном применяются в загородном жилье.

Принцип работы: Во время импульса перенапряжения УЗИП увеличивают свое сопротивление и замыкают на землю распространяющийся по системе разряд.

Более подробно читаем про ограничители перенапряжений. В основном устанавливаются в электрощиты учета

2. Реле напряжения –используют для защиты оборудования от скачков напряжения в сети или «обрыва нуля»

Применяется как в городском, так и загородном жилье..

Принципе работы- реле разрывает цепь, при отклонениях напряжения в сети больше заданных значений. После восстановления напряжения в сети, устройство автоматически замыкает цепь. .

Наиболее известные устройства на российском рынке. Устанавливаются при монтаже квартирных щитков

Реле РН 113

Максимальный ток -32А

Регулировки напряжения Umin 170-230 Umax 240-290

Наличие дисплея, отображающего текущее напряжение в сети.

Устанавливается в распределительных квартирных щитах в однофазных сетях. В случае, если в квартиру или в дом запутывается с помощью трехфазной сети, то обычно обеспечивают защиту каждой фазы

Реле 101М

Номинальный ток 16А,

Регулировки напряжения Umin 160-220 Umax 230-280

Устанавливается путем включения в розетку электросети, защищаемое оборудование включается непосредственно в РН 101М.

Наличие ЖК экрана, с индикацией текущего напряжения в сети

Наша компания является дилером компании Новатек Электро, поэтому своим клиентам мы преимущество рекомендует использовать именно реле РН 113.

Реле УЗМ 51

Защита нагрузки от импульсных скачков сетевого напряжения

Макс. ток шунтирования импульсов варистором — 8000 А

Обеспечивает подавление импульсов с энергией до 200 Дж

Защита нагрузки от повышенного напряжения (более 270 В, для УЗМ-51 242-286 В)

Защита нагрузки от пониженного напряжения (менее 170 В, для УЗМ-51 154-198 В)

Фиксированная задержка срабатывания — 0,2с при превышении напряжения

Номинальный ток 63А.

Реле напряжения РН-106 Новатек Электро (аналог УЗМ51)


Защита отходящих линий от повышенного/пониженного напряжения (в диапазоне 160-280В) и обрыва нейтрали

Номинальный ток — 63А

Мощность подключаемых электроприборов — до 14 квт

3. Переключатель фаз ПЭФ 3

используется для повышения бесперебойности питания однофазных нагрузок от трехфазной сети.

При изменении напряжения в питающей «фазе» реле переключит питание на другую фазу, в которой напряжение соответвуется зданным значениям.

Продукция ABB (АББ)

АББ — лидер в области технологий для электроэнергетики и автоматизации. Технологии, созданные Группой, позволяют промышленным предприятиям и энергетическим компаниям повышать свою производительность, снижая негативное воздействие на окружающую среду. АББ поставляет на Российский рынок всю низковольтную электротехнику — от предохранителей до комплектных распределительных устройств, от стандартных электродвигателей до регулируемых приводов.

Современное оборудование производится на заводах АББ в Германии, Швеции, Финляндии, Франции, Италии, Испании и других странах Европы по самым передовым технологиям.

Номенклатура поставляемой электротехнической продукции содержит десятки тысяч наименований и постоянно расширяется и обновляется. АББ — одна из крупнейших в мире технологических компаний, офисы и производство АББ находятся более чем в 100 странах мира.

Устройства защиты от перенапряжения серии OVR ® компании ABB (АББ)

В современном веке с каждым годом используется все больше дорогого, чувствительного оборудования. Персональные компьютеры уже давно стали не предметом роскоши, а обычной частью современной квартиры. Вместе с компьютерами в наших офисах и квартирах появляется много других дорогих электрических приборов: телевизоры, плазменные панели, бытовая техника, домашние кинотеатры, музыкальные системы. Большинство современной техники очень восприимчиво даже к небольшим скачкам импульсных перенапряжений. По статистике, 61% выхода из строя электрического оборудования происходит в результате импульсных скачков напряжения. Как результат, мы с вами можем видеть разрушение чувствительных элементов, а так же наблюдать взрывы и возгорания электрических приборов, вплоть до возникновения пожара в здании.

Что такое импульсное перенапряжение?

Кратковременный скачок напряжения (менее миллисекунды), амплитуда которого может многократно превышать номинальное напряжение сети.

Причины возникновения импульсного перенапряжения?

  • Прямое попадание молнии в защищаемый объект (внешний молниеприемник, воздушный ввод).
  • Удаленный удар молнии, процессы переключений коммутаций в системе электроснабжения (переключение трансформаторов, электродвигателей или любых индуктивностей, внезапные изменения нагрузки, отключение защитных автоматов или разъединителей).
  • Неустойчивые наводки с неопределенными амплитудами и частотами, которые приносятся в сеть электропитания самим пользователем или его оборудованием. Такие наводки могут быть следствием работы дуговых печей, сварочных аппаратов, тиристорных устройств.

Электронные каталоги

  • Защита от перенапряжения OVR

Сервис приема отзывов, предложений и рекламаций

Воспользуйтесь нашим новым сервисом:

Индивидуальное нанесение маркировки в кратчайшие сроки!

18.02.2021
18 февраля 2021: ДЕНЬ МОДУЛЬНЫХ КОНТАКТОРОВ NCH8

17.02.2021
17 февраля 2021: ДЕНЬ ПУТЕВЫХ ВЫКЛЮЧАТЕЛЕЙ YBLX-K3

16.02.2021
16 февраля 2021: ДЕНЬ МОНТАЖНОЙ ПЛАТЫ

15.02.2021
15 февраля 2021: УАВР СЕРИИ NZ7А

13.02.2021
Анонс! Дни Специальных Предложении «Электро-Профи» с 15 по 20 февраля 2021 года

12.02.2021
12 февраля 2021: ДЕНЬ КОНТРОЛЛЕРА

11.02.2021
11 февраля 2021: ДЕНЬ ПРОМЫШЛЕННЫХ РАЗЪЕМОВ HDC ROCKSTAR

10.02.2021
Внимание! Вышел Каталог НКУ типовых решений 2021 Siemens на базе корпусов Провенто

10.02.2021
10 февраля 2021: ДЕНЬ КОММУТАТОРА ECO LINE

09.02.2021
Новинка: Распределительные блоки DBL от нашего партнера TE Entrelec Rus

Способы защиты от перенапряжений в электрических сетях

Перенапряжение – это ненормальный режим работы в электрических сетях, который заключается в чрезмерном увеличении значения напряжения выше допустимых значений для участка электрической сети, который является опасным для элементов оборудования данного участка электрической сети.

Изоляция оборудования электроустановок рассчитана на нормальную работу при определенных значениях напряжения, в случае наличия перенапряжения, изоляция приходит в негодность, что приводит к повреждению оборудования и представляет опасность для обслуживающего персонала или людей, которые находятся в непосредственной близости к элементам электрических сетей.

Перенапряжения могут быть двух видов – природными (внешними) и коммутационными (внутренними). Природные перенапряжения – это явление атмосферного электричества. Коммутационные перенапряжения возникают непосредственно в электрических сетях, причинами их проявления могут быть большие перепады нагрузки на линиях электропередач, феррорезонансные явления, послеаварийные режимы работы электрических сетей.

Способы защиты от перенапряжений

В электроустановках для защиты оборудования от возможных перенапряжений применяют такое защитное оборудование, как разрядники и ограничители перенапряжения нелинейные (ОПН) .

Основным конструктивным элементом данного защитного оборудования является элемент с нелинейными характеристиками. Характерная особенность данных элементов заключается в том, что они изменяют свое сопротивление в зависимости от приложенного к ним значения напряжения. Рассмотрим вкратце принцип работы данных защитных элементов.

Разрядник или ограничитель перенапряжения присоединяется к шине рабочего напряжения и к контуру заземления электроустановки. В нормальном режиме, то есть, когда сетевое напряжение находится в пределах допустимых значений, разрядник (ОПН) имеет очень большое сопротивление, и он не проводит напряжение.

В случае возникновения перенапряжения на участке электрической сети сопротивление разрядника (ОПН) резко падает, и данный защитный элемент проводит напряжение, способствуя утечке возникшего скачка напряжения в заземляющий контур. То есть на момент перенапряжения разрядник (ОПН) осуществляет электрическое соединение провода с землей.

Разрядники и ОПН устанавливаются для защиты элементов оборудования на территории распределительных устройств электроустановок, а также в начале и в конце линий электропередач напряжением 6 и 10 кВ, которые не оборудованы грозозащитным тросом.

Для защиты от природных (внешних) перенапряжений на металлических и железобетонных конструкциях открытых распределительных устройств устанавливают стержневые молниеотводы . На высоковольтных линиях напряжением 35 кВ и выше применяют грозозащитный трос (тросовый молниеотвод), который располагается в верхней части опор линий электропередач на всей их протяженности, соединяясь с металлическими элементами линейных порталов открытых распределительных устройств подстанций. Молниеотводы притягивают атмосферные заряды на себя, тем самым предупреждая их попадания на токоведущие части электрооборудования электроустановок.

Для обеспечения надежной защиты оборудования электроустановок от возможных перенапряжений, разрядники и ограничители перенапряжений, как и все элементы оборудования, должны проходить периодические ремонты и испытания. Также необходимо в соответствии с установленной периодичностью проверять сопротивление и техническое состояние заземляющих контуров распределительных устройств.

Перенапряжения в низковольтных сетях

Явление перенапряжений также характерно и для низковольтных сетей напряжением 220/380 В. Перенапряжения в низковольтных сетях приводят к выходу из строя не только оборудования данных электрических сетей, но и электроприборов, которые включены в сеть.

Для защиты от перенапряжений в домашней электропроводке используют реле напряжения или стабилизаторы напряжения, источники бесперебойного питания, в которых предусмотрена соответствующая функция. Также существуют модульные устройства защиты от импульсных перенапряжений, предназначенные для установки в домашний распределительный щиток.

В низковольтных распределительных устройствах предприятий, электроустановок, ЛЭП для защиты от перенапряжений применяют специальные ограничители перенапряжений по принципу работы схожие с высоковольтными ОПН.

Защита сети 220 вольт от перенапряжения — как защитить электроприборы в вашем доме?

Хотя подача электричества в квартиры и дома регулируется законодательством, жильцам не стоит полностью рассчитывать на то, что соответствующие службы обеспечат подачу электроэнергии нужного качества. Если из-за бросков сетевого напряжения дорогостоящие электроприборы выйдут из строя, получить компенсацию будет практически невозможно. А поскольку неполадки на электролиниях – не редкость, то стоит самостоятельно принять меры, которые помогут уберечь бытовую технику от поломки. Для этого нужна защита от перенапряжения, обеспечить которую можно, установив в сети соответствующий прибор – защитное реле, датчик с УЗО или стабилизатор напряжения.

Читать еще:  Монтаж электропроводки в ванной комнате

Допустимые параметры электроэнергии

Номинал напряжения, обозначенный на всей бытовой электротехнике, составляет 220В, однако в реальной жизни это значение стабильно далеко не всегда. Это учитывается при изготовлении современных приборов, и они могут устойчиво работать при колебании напряжения от 209 до 231В, а также переносить разброс от 198 до 242В. Если бы небольшие перепады разности потенциалов не были предусмотрены конструкцией бытовой техники, она ломалась бы постоянно. Более значительные отклонения приводят к перегрузке сети, и это снижает эксплуатационный ресурс аппаратуры.

Чтобы сгладить колебания напряжения и обеспечить безопасность приборов, достаточно установить стабилизатор. Гораздо опаснее для электротехники перенапряжение (так называется резкий скачок разности потенциалов).

Разновидности перенапряжений

Перенапряжение может длиться как короткое, так и достаточно продолжительное время. Оно может быть вызвано ударом молнии во время грозы или коммутацией, возникшей из-за неполадок подстанции. Для защиты от них в сеть 220 или 380 Вольт (бытовую или промышленную) включается УЗИП (устройство защиты от импульсных перенапряжений). Его автоматическое срабатывание помогает обезопасить линию при воздействии, например, мощного грозового разряда, от которого не сможет спасти стабилизатор напряжения.

Наглядно про УЗИП на видео:

Удар молнии приводит к появлению мощного электромагнитного импульса, под влиянием которого в расположенных рядом с местом разряда проводниках возникают электрические потенциалы, и происходит резкий скачок напряжения. Длится он всего около 0,1 с, но величина разности потенциалов при этом составляет тысячи вольт.

Понятно, что при поступлении такого напряжения в домашние и производственные сети последствия могут быть очень тяжелыми.

Перенапряжение в результате коммутации

Такое явление может произойти при включении в линию или выключении приборов, дающих высокую индуктивную нагрузку. К ним относятся блоки питания, электромоторы, а также мощные инструменты, запитывающиеся от сети.

Этот эффект обусловлен законами коммутации. Моментальное изменение величины тока в соленоиде, а также разности потенциалов на конденсаторе произойти не может. Когда цепь с такой нагрузкой соединяется или размыкается, то в месте контакта отмечается появление вызванного самоиндукцией и коммутационными процессами электрического потенциала.

Течение переходного процесса всегда сопровождается выбросом напряжения, которое обладает полярностью, обратной входному. Небольшая емкость проводников в сети вызывает резонанс, длящийся короткое время и вызывающий высокочастотные колебания. По завершении переходного процесса они затухают.

Сколько продлится перенапряжение и какова будет его величина, зависит от следующих показателей:

  • Индуктивность нагрузки.
  • Моментальное значение разности потенциалов при коммутации.

  • Емкость подключающих электрических кабелей.
  • Реактивная мощность.

Опасность перенапряжения

Поскольку изоляция проводов рассчитана на величину напряжения, значительно превышающую номинал, пробоя чаще всего не случается. Если электроимпульс действует в течение незначительного времени, то напряжение на выходе блоков питания со стабилизатором не успевает возрасти до критического показателя. Это же касается и обычных лампочек – если резко возросшее напряжение быстро нормализуется, то спираль не успевает не только перегореть, но даже перегреться.

Если же изоляционный слой не выдерживает увеличившегося напряжения и происходит его пробой, то появляется электрическая дуга. В этом случае поток электронов проникает сквозь микротрещины, возникшие в изоляции, и идет через газы, которыми наполнены образовавшиеся мельчайшие пустоты. А большое количество тепла, выделяемое дугой, способствует расширению токопроводящего канала. В итоге нарастание тока происходит постепенно, и автомат защиты срабатывает с некоторым опозданием. И хотя оно занимает всего несколько мгновений, их оказывается вполне достаточно для выхода электропроводки из строя.

Какими устройствами обеспечивается защита сети от перенапряжения?

Схема защиты электрической линии от скачков напряжения может включать в себя:

  • Систему молниезащиты.
  • Стабилизатор напряжения.
  • Датчик повышенного напряжения (устанавливается вместе с УЗО).
  • Реле перенапряжения.

Отдельно нужно сказать о блоках бесперебойного питания, через которые в домашних сетях чаще всего подключают компьютеры. Этот прибор не предназначен для защиты от перенапряжения в сети. Его функция заключается в другом: при внезапном отключении света он работает как аккумулятор, позволяя пользователю сохранить информацию и спокойно выключить ПК. Поэтому путать его со стабилизатором напряжения не следует.

Принцип работы защитных устройств

Для защиты от электроимпульсов, возникающих под действием молнии, устанавливается грозозащитный разрядник вместе с УЗИП. А обезопасить линию от потока электронов, параметры которого не соответствуют рабочим характеристикам сети, можно с помощью специальных датчиков, а также реле перенапряжения.

Следует сказать, что как ДПН, так и реле по принципу действия и назначению отличаются от стабилизатора.

Задача этих элементов состоит в том, чтобы прекратить подачу электроэнергии в случае превышения величиной перепада максимального порога, указанного в техническом паспорте средства защиты или выставленного регулятором.

После нормализации параметров электрической линии происходит самостоятельное включение реле. ДПН для защиты линии следует устанавливать только в паре с устройством защитного отключения. Его задача заключается в том, чтобы при обнаружении неполадок вызвать утечку тока, под воздействием которой сработает УЗО.

Наглядно про реле напряжения на видео:

Недостаток такой схемы заключается в необходимости ее ручного включения после того, как напряжение придет в норму. В этом плане выгодно отличается стабилизатор напряжения. Это устройство предусматривает регулируемую временную задержку токоподачи, если происходит его срабатывание под воздействием чрезмерного напряжения. Стабилизатор часто используют для подключения кондиционеров и холодильных аппаратов.

Длительные перенапряжения

Продолжительные перенапряжения очень часто происходят из-за обрыва нулевого проводника. Неравномерность нагрузки на фазных жилах становится причиной перекоса фаз – смещения разности потенциалов к проводнику с самой большой нагрузкой.

Иначе говоря, под воздействием неравномерного трехфазного электротока на нулевом кабеле, не имеющем заземления, начинает скапливаться напряжение. Ситуация не нормализуется до тех пор, пока повторная авария окончательно не выведет линию из строя или специалист не устранит неисправность.

При обрыве нулевого провода в электророзетке будет происходить изменение напряжения в соответствии с нагрузкой, которую пользователи, не знающие о неполадках, будут подключать на различные фазы. Пользоваться неисправной цепью практически невозможно, даже если в линию питания включен хороший стабилизатор. Дело в том, что сетевые параметры, регулярно выходящие за пределы стабилизации, приведут к тому, что прибор будет постоянно выключаться.

Наглядно про обрыв ноля и что нужно при этом делать – на видео:

Недостаток напряжения (провал)

Это явление особенно хорошо знакомо людям, проживающим в деревнях и селах. Провалом (проседанием) называется падение величины напряжения ниже допустимого предела.

Опасность проседаний заключается в том, что в конструкцию многих бытовых приборов входит несколько блоков электропитания, и недостаток напряжения приведет к тому, что один из них кратковременно выключится. Аппарат среагирует на это выдачей ошибки на дисплее и остановкой работы.

Если речь идет об отопительном котле, а неисправность произошла в зимнее время, то дом останется без отопления. Избежать такой ситуации поможет подключение стабилизатора. Этот прибор, зафиксировав проседание, повысит величину напряжения до номинала. Стабилизатор может спасти ситуацию, даже если напряжение в сети упало по вине трансформаторной подстанции.

Заключение

В этой статье мы рассказали, для чего нужна защита от перенапряжения в сети, какими устройствами она обеспечивается и как правильно ими пользоваться. Приведенные рекомендации помогут читателям разобраться в причинах сбоя сетевого напряжения, а также выбрать и установить устройство для защиты электросети.

Как защитить сеть от перенапряжения и что для этого нужно

Основные причины возникновения

Чаще всего перенапряжение в сети 220 и 380 Вольт возникает по следующим причинам:

  1. Обрыв нулевого провода на питающей линии. Нулевой проводник обеспечивает симметричность напряжения по фазам питающей сети, при различной величине нагрузки по фазам. В случае обрыва нуля напряжение по каждой из фаз изменяется в зависимости от разницы нагрузок по фазам: на менее нагруженной фазе оно резко возрастает вплоть до 300 и более Вольт, а на более загруженной фазе резко падает до значений ниже 200 В. Поэтому без защиты от перенапряжений при высоком напряжении бытовая техника может выйти из строя практически сразу, а при низком напряжении электроприборы будут работать некорректно. При этом высока вероятность выхода из строя электроприборов, в конструкции которых есть электродвигатели (компрессоры).
  2. Ошибка при подключении в электрощите. Если в доме выполнен трехфазный ввод и при подключении однофазной линии проводки 220 В ошибочно был подключен вместо нуля проводник второй фазы, то в розетке вместо 220 В появится 380 В.
  3. Возникло импульсное напряжение вследствие попадания грозы в ЛЭП (именно поэтому рекомендуют отключать всю бытовую технику во время грозы, а также делать молниезащиту на участке).
  4. Коммутационные перенапряжения. В случае возникновения аварийных ситуаций в электрической сети: короткого замыкания на смежных линиях, скачкообразного изменения нагрузки из-за отключения (подключения) участка электрической сети, аварий на электростанциях, могут наблюдаться перепады напряжения, которые, в зависимости от величины, могут негативно повлиять на работу домашних электроприборов.

Как Вы видите, на перегрузку в однофазной и трехфазной сети влияет множество факторов, в том числе и природные. Поэтому домашнюю проводку нужно обязательно защитить, чтобы не стать жертвой несчастного случая.

Устройства для защиты от перенапряжения

В современном мире существует множество различных устройств для защиты от перенапряжения в сети, которые несложно подключить своими руками. Рассмотрим устройства, которые применяют для защиты от нежелательных перепадов напряжения.

Среди наиболее полезных для применения в доме и квартире выделяют:

  1. Стабилизатор. Данное устройство осуществляет преобразование (стабилизацию) входного напряжения в напряжение заданной величины. Стабилизатор актуально ставить в том случае, если в сети наблюдаются постоянные перепады напряжения. Следует учитывать, что стабилизатор работает только при напряжении, которое не выходит за пределы допустимых значений, которые указываются в его технических характеристиках. В случае возникновения скачков напряжения выше допустимых границ, стабилизатор может выйти из строя. Поэтому необходимо выбирать стабилизатор напряжения со встроенной защитой от перенапряжения, а при отсутствии такой функции устанавливать для защиты реле напряжения. О том, как подключить стабилизатор напряжения, мы рассказывали в соответствующей статье!
  2. Реле напряжения. Данное защитное устройство, в отличие от СН, не осуществляет преобразование входного напряжения. Реле напряжения предназначено для отключения домашней проводки от электрической сети в случае возникновения нежелательных перепадов напряжения (ГОСТ 3699-82). На реле устанавливают границы минимального и максимального напряжения, и в случае возникновения скачка выше установленных пределов, реле обесточивает домашнюю электропроводку, тем самым защищая домашние электроприборы. РН может быть выполнено в виде модульного аппарата для установки в распределительный щиток (всем известный Барьер), встроенное в удлинитель (сетевой фильтр с соответствующей функцией), а также в виде электрической вилки (к примеру, ЗУБР). О том, как выбрать реле напряжения мы рассказывали в отдельной статье.
  3. Устройство защиты многофункциональное (УЗМ). Данное устройство может быть установлено в распределительный щиток вместо реле напряжения. УЗМ выполняет несколько функций, одной из которых является защита электрической сети от перепадов напряжения. О том, как работает УЗМ-51М и как его подключить, мы рассказали в отдельной статье.
  4. Источник бесперебойного питания. Опять-таки, на своем опыте подтвержу его эффективность. Более десяти раз ИБП спасал мой компьютер от резкого выключения при срабатывании реле напряжения в электрощите. «Бесперебойник» имеет небольшую стоимость, поэтому купить такой вариант защиты от перенапряжения при наличии ПК крайне необходимо. К тому же большинство современных источников бесперебойного питания имеют встроенный стабилизатор, что особенно актуально для компьютерной техники, которая больше из всей бытовой техники подвержена негативному воздействию перепадов. О том, как выбрать ИБП, читайте в нашей статье: https://samelectrik.ru/sovety-po-vyboru-besperebojnika.html.
  5. УЗИП. От импульсных напряжений (возникают во время грозы и могут вывести технику из строя) можно защититься, установив в доме УЗИП. Данный аппарат является достаточно популярным на сегодняшний день и широко применяется как в быту, так и на производстве. Более подробно о том, что такое УЗИП и как он работает, мы рассказали в отдельной статье, с которой настоятельно рекомендуем ознакомиться. Следует отметить, что УЗИП могут также называть модульными ограничителями перенапряжения (ОПН).
  6. Обращение в энергоснабжающую службу. Энергоснабжающая организация в соответствии с договором по электроснабжению обязана обеспечивать нормальный (в пределах допустимых норм) уровень напряжения электрической сети в соответствии с ГОСТ 29322-2014 (IEC 60038:2009). Поэтому если у вас постоянно чрезмерно низкое или, наоборот, повышенное напряжение, то нужно обращаться в снабжающую организацию с соответствующей жалобой. Наиболее эффективно обращаться с коллективной жалобой, так как одиночные обращения, как правило, игнорируют. Обращение в снабжающую организацию — единственный способ решения проблемы в том случае, если у вас наблюдаются сильные перепады напряжения, так как в таком режиме любой СН быстро выйдет из строя.
Читать еще:  Не работает люминесцентная лампа

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

После установки необходимых устройств может быть обеспечена защита от перенапряжения в сети 220 и 380 Вольт, после чего можно не беспокоиться о том, что пострадает бытовая техника, электропроводка и главное – Ваша жизнь в опасной ситуации.

Электробезопасный частный жилой дом и дача. Часть 4. Защита от перенапряжений

Несмотря на теоретическую возможность появления в системе электроснабжения 0.4 кВ импульсных перенапряжений с амплитудой в десятки киловольт, РЕАЛЬНОЕ значение амплитуды ограничивается импульсной прочностью изоляции электрооборудования.

Импульсная прочность изоляции электрооборудования с номинальным напряжением 230/400 вольт устанавливается стандартом и принимается равным 6 кВ. Исходя из этого, появление в цепях электрооборудования напряжения выше 6 кВ маловероятно (появление амплитуд выше 6 кВ возможно по данным российских ученых лишь в 10% случаев).

Исходя из этого ВСЕ электрооборудование до 1000 вольт было разделено на 4 категории (для трехфазных систем 230/400 вольт):

— 4 категория — это оборудование выдерживающее импульсное напряжение 6 кВ (электросчетчики, автоматы, разрядники и т.п.),

— 3 категория — это оборудование выдерживающее импульсное напряжение 4 кВ (розетки, выключатели, электродвигатели, распредщитки, проводка, электроплиты и т.д ),

— 2 категория — это оборудование выдерживающее импульсное напряжение 2.5 кВ (это оборудование которое подключается к розеткам (бытовые электроприборы, переносной электроинструмент и т. п.),

— 1 категория — это оборудование выдерживающее импульсное напряжение не более 1.5 кВ (оборудование содержащее полупроводниковые приборы и/или микросхемы).

Подведем теперь некоторые промежуточные итоги:

1. Импульсное перенапряжение от сети питания свыше 6 кВ нам не грозит.

2. Так как, электросчетчик, автоматы и разрядники относятся к 4 категории, то нет необходимости их защищать от импульсного перенапряжения.

3. Все что находится после п.2 необходимо защищать от им. перенапряжения, если это необходимо.

УЗИП.

Теперь, когда мы понимаем суть проблемы становится и ясно как с нею можно бороться. Главное что нам нужно сделать — это понизить импульсное напряжение в 6 кВ, если оно появится, до безопасных 1.5 кВ. Для этих целях служат УЗИП — устройство защиты от импульсных перенапряжений (ограничитель).

В начале пути своего развития УЗИПы делались для каждой категории отдельно, для 3 категории — ограничители I класса, для 2 категории — ограничители II класса, для категории I — ограничители III класса.

После электросчетчика и автомата, которые не нуждались в защите, устанавливали ограничитель I класса, который срезал им.напряжение 6 кВ до 4 кВ (1 ступень защиты). Далее по ходу питания, ставили ограничитель II класса, который срезал поступившее на него напряжение 4 кВ от ограничителя I класса — до 2.5 кВ ( 2 ступень защиты). Далее, опять по ходу питания ставили ограничитель III класса, который срезал поступившее на него напряжение от ограничителя II класса -2.5 кВ до 1.5 кВ (3 ступень защиты).

Наблюдательный читатель спросит — зачем такие сложности -нельзя ли сразу ограничить им.напряжение с 6 кВ до требуемых 1.5 кВ? Спешу его обрадовать — с развитием техники такое стало возможным. Сейчас имеются в продаже универсальные УЗИПы, совмещающие в одном корпусе ограничители I, II и III классов, I и II классов, II и III классов. В связи с этим отпала необходимость соблюдать минимально-необходимые расстояния (5-20 метров) между отдельно стоящими УЗИПами или вместо этого устанавливать между ними дроссели, которые имитировали такие расстояния.

Далее, несколько слов о наших нормах. Вот выдержка из Технического Циркуляра №30 за 2012 год

ЦИРКУЛЯРЫ АССОЦИАЦИИ «РОСЭЛЕКТРОМОНТАЖ» ТЕХНИЧЕСКИЙ ЦИРКУЛЯР № 30/2012 «О ВЫПОЛНЕНИИ МОЛНИЕЗАЩИТЫ И ЗАЗЕМЛЕНИЯ ВЛ И ВЛИ ДО 1 кВ»

— Установка абонентских УЗИП носит рекомендательный характер, и они могут устанавливаться как на абонентском ответвлении, так и непосредственно у потребителя.

— Установка абонентских УЗИП без установки УЗИП на линии и на ТП не допускается.

— В сетях напряжением 380/220 В (400/230 В) для защиты линий применяют УЗИП с номинальным напряжением до 450 В, для защиты абонентских однофазных ответвлений применяют УЗИП с номинальным напряжением до 280 В.

— Наличие повторного заземления и системы уравнивания потенциалов у потребителя является обязательным.

То есть, во первых, если мы решили защитить наш дом с помощью УЗИП то необходимо убедится, что УЗИПы установлены на ВЛ и ТП. Во вторых — необходимо иметь заземляющее устройство.

МОЕ ЗАМЕЧАНИЕ к п.3 Циркуляра. В ввиду того, что на однофазном ответвлении к дому при аварийных ситуациях возможно появление напряжения до 380 вольт, то необходим УЗИП с номинальным напряжением выше 380 вольт (если ВЛ выполнена отдельными проводами).

Что бы не запутаться во всем этом, ниже я представил алгоритм принятия решения по установке е УЗИП в нашем доме:

Если все это имеет место в вашем случае (то есть соблюдены все необходимые условия) — можно приступать к работе по защите дома от перенапряжений (уже отталкиваясь от других норм).

Далее, давайте посмотрим, как работает УЗИП 1 кл. защиты.

Рис. 1. Защитные устройства УЗИП 1 класса в случае импульса перенапряжения от ВЛ и от прямого удара молнии

На рисунке сверху видно, что импульс перенапряжения пришел по фазному проводу от ВЛ в наш дом. Если он выше 4 кВ, то срабатывает разрядник и одна часть тока стечет в землю, через наше заземляющее устройство, а другая часть стечет на PEN провод, который на ВЛ повторно заземлен и на ТП соединен с глухозаземленной нейтралью трансформатора. На рисунке снизу, видно, что при прямом ударе молнии в наш молниеприемник, 50% тока молнии стечет через наше заземляющее устройство, а другая половина тока молнии растечется поровну между фазным и нулевым проводниками. Исходя из этого и выбирают УЗИП.

Молнии редко бывают с силой тока более 100 кА, поэтому в расчетах ток молнии принимают за эту величину. Итак, 50 кА в нашем примере ушло в наше заземляющее устройство. Оставшиеся 50 кА, при срабатывании нашего о УЗИПа, распределятся поровну между L и PEN проводами, то есть наш УЗИП должен быть рассчитан на ток не менее 25 кА.

О воздушной линии ( (ВЛ).

Становится понятным, что если ВЛ находится в плачевном состоянии (заземляющие спуски сгнили, оборваны и т.п ), то не найдя путь в землю ток молнии прямиком зайдет в наш дом и натворит кучу бед. Таким образом необходимо хорошо знать свою ВЛ и если есть сомнения в ее надежности, то необходимо, как минимум оборудовать столб от которого запитан ваш дом, то есть выполнить на этом столбе заземление нулевого провода, к этому заземлению соединить крюк (штырь) на котором держится изолятор вашего фазного провода, а если опора железобетонная, то и ее арматуру. Сделав это вы получите как бы 1 линию обороны уже на подступе к дому. 2 линия обороны — это уже установка УЗИПов на вводе в дом (1, 2 и 3 классов).

Читать еще:  Расшифровка обозначений на мультиметре, что означают кнопки и значки

Примечание. Многие сейчас ответвление к вводу делают проводом СИП. Если его подключить к ВЛ “плохого качества” то при ПУМ в ВЛ — возможен пробой изоляции СИП, то есть надо делать такое ответвление отдельными проводами, разнесенными друг от друга (или принимать дополнительные меры защиты).

На ВЛИ (то есть ВЛ выполненной самонесущими изолированными проводами — СИП) ситуация уже будет другая. ПУМ (прямой удар молнии) в изолированный фазный провод практически нереален и в таком проводе возможен только наведенный импульс перенапряжения, вызванный близким разрядом молнии или от коммутаций. Для защиты изоляции ВЛИ сетевики уже вынуждены тщательно следить за разрядниками и т.п. что бы линия находилась в исправном состоянии.

Какой вывод можно сделать из сказанного? Если ВЛ находится в плохом состоянии то необходимо “оборудовать” cтолб от которого запитан наш дом и на вводе в дом установить мощный разрядник, рассчитанный на отвод тока молнии 50-100 кА (с формой тока 10 / 350 мкс).

Если же наш дом запитан от ВЛИ, то столб можно оставить в покое и разрядник установить попроще (с формой тока 8/20 мкс и на ток 6-10 кА).

Рассмотрим теперь тот же вариант, но дом оборудован еще и .

Если дом запитан от ВЛИ (или ВЛ в качестве которой мы уверены), то УЗИП для 1 ступени защиты необходимо выбирать исходя из распределения тока молнии при ПУМ в молниеприемник (как описано выше). Если же дом запитан от ВЛ в качестве которой мы не уверены, то необходимо исходить от ПУМ в фазный провод ВЛ.

Рис. 2. Выбор УЗИП для первой ступени защиты (для увеличения нажмите на рисунок).

В следующей части мы рассмотрим схемы включения УЗИП для с.TN-C-S и TT, как их выбрать, смонтировать и где все разместить, учитывая специфику частного дома и запитки его от ВЛ, а так же от наличия или отсутствия внешней молниезащиты.

Защита от перенапряжения в сети

Перенапряжения, которые возникают в электросети, сопровождаются, как правило, выходом из строя электрических приборов. Кроме того, перенапряжения, могут привести к таким негативным последствиям как пожар или даже гибель людей. В данной статье рассмотрены устройства, которые применяются для защиты от перенапряжения в сети.

Довольно часто в наших домах и квартирах можно наблюдать то, что напряжение в розетках несколько отличается от положенных 220 В. Зависит это от разных причин и диапазон таких отклонений напряжения может колебаться от 170 – 380 В до нескольких тысяч В.

Не трудно догадаться, что такие перепады напряжения часто становятся причиной выхода из строя бытовой техники. Понятно, что пониженное напряжение может привести к не корректной работе электрооборудования, а повышенное к выходу его из строя, особенно это касается таких устройств как компьютеры, телевизоры, плазменные панели, холодильники и т.п.

Перенапряжением называется такое значение установившегося напряжения, которое превышает значение предельно допустимого напряжения.

Государственным стандартом качества электрической энергии установлены нормы отклонения напряжения в точке подключения потребителей электрической энергии. Существует понятие допустимое и предельно допустимое значение напряжения. Эти значения равны соответственно ±5 и ±10 % от номинального значения напряжения и в точках общего присоединения потребителей.

То есть нормальным считается напряжение:

  • — для однофазной сети в диапазоне 198 – 242 В;
  • — для трехфазной сети 342 – 418 В.

Причины возникновения перенапряжения

1) Самой распространенной причиной перенапряжения для бытовых потребителей является обрыв нулевого провода (N).

Нулевой провод при несимметричных нагрузках выравнивает фазные напряжения у потребителя электроэнергии. При обрыве или отгорании нулевого провода ток будет циркулировать между фазами. Часть потребителей получит повышенное напряжение, вплоть до 380 В, а часть заниженное.

2) Неправильное или ошибочное подключение в электрощитовой, когда вместо нулевого провода вы подключаете фазный, при этом в дом приходит не 220 В, а 380 В.

3) Во время грозовых разрядов, удар молнии в линию электропередачи, возникают импульсные перенапряжения которые по величине могут достигать нескольких тыс. В.

4) Регулирования напряжения на подстанциях энергосистем.

Защита от перенапряжения

— применение стабилизаторов напряжения предохраняет вашу сеть от перепадов напряжения, делая эксплуатацию электротехники безопасной. Большинство таких приборов имеют дисплей, на котором отображается напряжение сети, график скачков напряжения и т.п.

Стабилизаторы оснащены функцией контроля напряжения, если значение напряжения сети выходит за диапазон контроля стабилизатора, например ниже 150 В или выше 260 В, то стабилизатор блокируется и отключает от сети потребителя. Как только напряжение сети возобновляется до допустимых значений, стабилизатор снова включается.

реле напряжения защищает и отключает бытовую технику при возникновении недопустимых перепадов напряжения и автоматически включает потребителей после восстановления его допустимых значений.

Реле напряжения широко используется для защиты от перенапряжения бытовых электроприборов. Целесообразно использовать реле напряжения в квартирах так как в таких сетях не редко возникают опасные перенапряжения из за обрыва нулевого провода.

Реле напряжения по своей структуре могут использоваться для защиты как одного конкретного потребителя, так и для защиты всего дома или квартиры.

При защите одного или группы потребителей, реле напряжения подключается по схеме приемник – реле — розетка, то есть прибор подключается к реле, затем само реле включается в розетку.

Для защиты от перенапряжения всего дома или квартиры, реле напряжения устанавливается на DIN-рейку в распределительном щитке.

— комбинированное использование датчика повышенного напряжения (ДПН) и УЗО такой способ борьбы с перенапряжением получил широкое распространение благодаря незначительной цене.

Принцип работы весьма прост: ДПН контролирует наличие напряжения сети, УЗО отключает сеть при возникновении перенапряжения.

Перенапряжение в сети и защита от перенапряжения

Понятие перенапряжения в сети

В различных источниках можно найти разные определения «перенапряжения» в сети. Вот какое определение этого понятия дает Википедия:

Морской словарь определяет перенапряжение как увеличение напряжения в линиях электропередач и в электрических сетях до такого значения, которое может повредить изоляцию.

Согласно ГОСТ Р 54130-2010перенапряжением называется превышение наибольшего рабочего напряжения, которое устанавливается для данного типа электрического оборудования.

Российская энциклопедия по охране труда определяет перенапряжение как значительное напряжение проводника относительно земли, которое может значительно превосходить фазное напряжение в результате внутренних или атмосферных явлений

Характеристики перенапряжения в электрической сети

Перенапряжением в общем случае может считаться любое значительное превышение напряжения в сети, вызванное различными причинами. Перепады напряжения могут иметь различную амплитуду, продолжительность и периодичность.

К основным характеристикам перенапряжения относятся:

  • значение пика напряжения
  • кратность повторения перенапряжения
  • время периода нарастания значения перенапряжения
  • площадь или длина распространения перенапряжения в сети
  • общее количество импульсов перенапряжения за период времени
  • общее время всего цикла перенапряжения

Типы перенапряжения в электрической сети

В общем случае по способу образования различают внутренние (или коммутационные) и внешние (грозовые или атмосферные) перенапряжения

Различают следующие основные типы перенапряжения в электрической сети:

  1. грозовые перенапряжения
  2. индуктивные перенапряжения
  3. квазистационарные перенапряжения
  4. коммутационные перенапряжения

Грозовые перенапряжения в сети

Прямое попадание разряда молнии в линию электрических передач может привести к появлению очень сильного перенапряжения. Значение перенапряжения в случае попадания молнии может достигать нескольких миллионов Вольт. Длительность такого перенапряжения, как правило, не превышает нескольких микросекунд. При появлении грозового перенапряжения изоляция электрических проводников и оборудования не может выдержать высокого напряжения.

Индуктивное электрическое перенапряжение в сети

От удара молнии в землю рядом с линией электропередач может возникнуть индуктивное перенапряжение. Индуктивное перенапряжение появляется вследствие резкого изменения электромагнитного поля. При этом значение перенапряжения может достигать 500 000 Вольт. Такое перенапряжение опасно для электрических приборов, подключенных к сети, электрических подстанций, силовых подстанций. Электрические импульсы индуктивного перенапряжения могут распространяться на значительные расстояния.

Квазистационарное перенапряжение в сети

Квазистационарные перенапряжения в сети могут продолжаться от нескольких секунд до нескольких минут. Такие перенапряжения опасны для оборудования, подключенного к сети.

Квазистационарные перенапряжения возникают по следующим причинам:

  • появление опасного резонанса в электрической сети
  • при коротких замыканиях в сети
  • при аварийном увеличении скорости электрогенератора в случае резкого падения значения нагрузки в сети
  • при появлении эффекта феррорезонанса в сетях с мощными индуктивными катушками или магнитопроводами

Коммутационные перенапряжения в сети

Коммутационные перенапряжения могут возникать в случае проведения переключений или коммутации оборудования в электрической сети. Как правило, такие эффекты наблюдаются при быстрых включениях или выключениях мощных электрических приборов и оборудования, имеющего большие индуктивные элементы, при резком включении или отключении оборудования с мощными конденсаторами или мощными электромагнитными катушками

Защита от перенапряжения в сети

Обязанности по защите электрических сетей от действия природных и техногенных факторов лежит на организациях, обслуживающих данные сети. Оборудование по молниезащите и защите от перепадов напряжения в сетях с высоким напряжением устанавливается на опорах и мачтах линий передач, на электрических подстанциях всех уровней. Оборудование для защиты сетей также устанавливается на подстанциях заводов и фабрик, силовых подстанциях питания сетей электротранспорта.

Для защиты электрооборудования дома и бытовых электрических приборов в частных домах и квартирах могут быть установлены локальные устройства для защиты от скачков и перепадов напряжения.

Компания «Бастион» производит линейку устройств защиты от скачков напряжения и перенапряжения. Подробнее об этих устройствах можно узнать в разделе «Защита от скачков напряжения».

Все устройства защиты по напряжению компании «Бастион» соответствуют требованиям российских и международных стандартов.

Устройства защиты от скачков напряжения и перенапряжения «Альбатрос» надежно будут защищать вашу сеть, электрическое оборудование и бытовые приборы от пагубного воздействия скачков напряжения и перенапряжения.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты