Kontakt-bak.ru

Контракт Бак ЛТД
24 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловая защита двигателя

Защита асинхронного двигателя – способы и схемы

Если правильно эксплуатировать асинхронный двигатель, он прослужит очень долго. Однако существуют факторы, способные сократить срок его службы, и их требуется нейтрализовать. В случае входа в аварийный режим электромотор должен быть быстро и своевременно отключен, иначе он сгорит.

К стандартным и часто встречающимся аварийным ситуациям относятся:

  • Короткое замыкание (КЗ). В этом случае срабатывает защита, которая отключает мотор от сети.
  • Перегрузка, из-за которой происходит перегрев двигателя.
  • Уменьшение или исчезновение напряжения.
  • Отсутствие напряжения на одной фазе.

Для защиты служат плавкие предохранители, магнитные пускатели или реле. Плавкие предохранители является одноразовыми, и после сгорания их приходится заменять. Автоматические переключатели с коммутациями срабатывают и при перегрузках, и при КЗ. Реле и магнитные пускатели бывают многократного действия с автоматическим самовозвратом или с ручным возвратом.

Защита от КЗ настраивается с учетом 10-кратного превышения номинального тока токами пуска и торможения. При местных замыканиях в обмотках мотора защита должна срабатывать, когда ток меньше, чем при пуске. В защите также предусматривают задержку отключения, и она срабатывает, если за это время потребляемый из сети ток сильно возрастет. Если защита от перегрузки действует слишком часто, скорее всего, мощность мотора не соответствует его назначению. Ложные срабатывания устраняют, соответственно выбирая и регулируя компоненты защиты.

Следует помнить, что любые способы и схемы защиты асинхронного электродвигателя должны быть не только просты, но и надежны.

Короткие замыкания, а также защита от перегрузок

Плавкие вставки – простейшая защита от коротких замыканий для моторов мощностью до 100 кВт. Если перегорят не все 3 предохранителя, могут отключиться только 1 или 2 фазные обмотки.

Если переходный процесс длится 2-5 секунд, номинальный ток предохранителя не должен быть меньше 40 % величины пускового тока, а если 10-20 секунд – то минимум 50 %. При неизвестной величине пускового тока и мощности Р мотора меньше 100 кВт примерная величина номинального тока I вставки выбирается так:

  • при U 500 вольт I = 4,5 Р;
  • при U 380 вольт I = 6 Р;
  • при U 2200 вольт I = 10,5 Р.

Тепловая защита

Тепловое реле – это биметаллическая пластина, нагреваемая током обмоток мотора. Деформируясь, она активизирует контакты, отключающие мотор. Тепловые реле могут встраиваться в магнитные пускатели. Следует принимать в расчет максимальное напряжение в сети, при котором допускается применение теплового реле, и ток, при котором реле работает долгое время и не активизируется.

Тепловое реле не может реагировать на токи короткого замыкания. Не действуют на него и недолгие перегрузки, которые недопустимы. Поэтому рекомендуется совмещать использование теплового реле с плавкими вставками.

Специальный датчик тепла защищает электромотор от перегрева еще успешнее. Он устанавливается на самом электромоторе. Некоторые двигатели имеют встроенный биметаллический датчик, представляющий собой контакт, который подключен к защите.

Понижение напряжения и исчезновение фазы

Если асинхронный электромотор работает с полной нагрузкой, а напряжение при этом понижено, то он начинает быстро нагреваться. Если в него встроен температурный сенсор, включится тепловая защита.

Если же температурного сенсора не имеется, надо обеспечить защиту электродвигателя от падения напряжения. В таком случае используются реле. Когда уменьшается напряжение, они срабатывают и подают сигнал на отключение электродвигателя. Исходное состояние защиты может восстанавливаться вручную или автоматически; при этом происходит задержка во времени для каждого электромотора при их группе. В противном случае при одновременном групповом запуске после восстановления напряжение в сети может снова понизиться, и произойдет новое отключение.

Правила устройства и эксплуатации электроустановок требуют защиты от исчезновения фазы тока только в случаях экономически нецелесообразных последствий. Экономически выгоднее не изготавливать и устанавливать такую защитную систему, а устранить причины, приводящие к режиму работы только на двух фазах.

Новейшими устройствами для защиты электромоторов можно назвать автоматические выключатели, способные к воздушному гашению дуги. В некоторых конструкциях совмещаются возможности рубильника, контактора, максимального реле и термореле. В подобных моделях мощная взведенная пружина размыкает контакты. Ее освобождение зависит от того, каков исполнительный элемент – электромагнитный или тепловой.

Таким образом, защита асинхронного двигателя, способы и схемы которой изложены выше, должна реализовываться пользователем в обязательном порядке.

Поддержка

Защита электродвигателя

В электродвигателях, как и в многих других электротехнических, устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае, из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Для повышения ресурса безаварийной работы двигателя и повышения эксплуатационной надежности, концерн Русэлпром предлагает использовать защиту двигателей.

Применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки. Правильный выбор защиты двигателя позволяет получить необходимый эффект с обоснованными затратами.

Как правило, для двигателей напряжением до 1000 Вт предусматривается:

  • защита от коротких замыканий;
  • защита от перегрузки.

Короткое замыкание в электродвигателе может привести к росту тока, более чем в 12 раз в течение очень короткого промежутка времени (около 10 мс). Для защиты двигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.

Защита от перегрузки устанавливается в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении.

Для защиты двигателя от перегрузки используется:

  • Тепловая защита;
  • Температурная защита;
  • Максимально токовая защита;
  • Минимально токовая защита;
  • Фазочувствительная защита.

Температурная защита

Наиболее эффективной защитой двигателей является температурная защита.

Температурная защита реагирует на увеличение температуры наиболее нагретых частей двигателя с мощью встроенных температурных датчиков и через устройства температурной защиты воздействует на цепь управления контактора или пускателя и отключает двигатель.

Любой двигатель производства концерна «Русэлпром» по заказу потребителя может быть укомплектован встроенными температурными датчиками для защиты двигателей в аварийных режимах, следствием которых может быть нагрев обмотки до недопустимой температуры.

В качестве датчиков используются полупроводниковые терморезисторы с положительным температурным коэффициентом — позисторы. Датчики встраиваются в лобовые части обмотки статора со стороны противоположной вентилятору наружного обдува по одному в каждую фазу, соединяются последовательно. Концы цепи датчиков выводятся на специальные клеммы в коробке выводов. К этим клеммам подключают реле или иной аппарат, реагирующий на сигнал датчиков.

Датчики реагируют только на температуру, и их действие не зависит от причин возникновения опасного нагрева. Поэтому такая система обеспечивает защиту двигателя как в режимах с медленным нагреванием (перегрузка, работа на двух фазах), так и в режимах с быстрым нагреванием (заклинивание ротора, выход из строя подшипников и другое).

Согласно требованиям ГОСТ 27895 (МЭК 60034$11) температура срабатывания защиты должна соответствовать значениям, приведенным в таблице.

Пороги термозащиты

Тепловой режимЗначение температуры обмотки статора для систем изоляции класса нагревостойкости, град. С
BFH
Установившийся (Предельно допустимое среднее значение)120140165
Медленной нагревание (Срабатывание защиты)145170195
Быстрое нагревание (Срабатывание защиты)200225250

Характеристики датчиков температурной защиты

Двигатели с датчиками температурной защиты имеют встроенные в каждую фазу обмотки и соединённые последовательно терморезисторы типа СТ14-2-145 по ТУ11-85 ОЖО468.165ТУ или другие терморезисторы с аналогичными параметрами.

В вводном устройстве двигателей предусмотрены клеммы для подсоединения цепи терморезисторов к исполнительному устройству температурной защиты.

Температура срабатывания датчиков температурной защиты:

Класс нагревостойкости изоляции двигателяОбозначения типа позистора по ТУ11-85 ОЖО468.165ТУПороговая температура срабатывания позистора, град. С.
ВCТ-14А-2-130130
FCТ-14А-2-145145
HCТ-14А-2-160160

Срабатывание температурной защиты происходит при возрастании температуры обмотки до значения, указанного в таблице 13, и температуре позистора, указанной в таблице 13.1. Время срабатывания защиты не превышает 15 с. Исполнительное устройство температурной защиты должно отключать силовую цепь двигателя при достижении сопротивления цепи термодатчиков 2100- 450 Ом.

Сопротивление одного позистора составляет 30 — 140 Ом при 25 градусах C, сопротивление цепи из 3 позисторов составляет 250±160 Ом.

Сопротивление изоляции цепи терморезисторов относительно обмоток статора двигателя при температуре окружающей среды (25 +5)°C составляет:

  • В практически холодном состоянии двигателя находится в пределах от 120 до 480 Ом. Измерительное напряжение при контроле не более 2,5 В.
  • В номинальном режиме работы двигателей при установившемся тепловом состоянии (температура обмотки двигателя

Тепловая защита двигателя Grundfos

Двигатели должны быть всегда защищены от нагрева до температуры, которая может разрушить систему изоляции обмоток. В зависимости от конструкции двигателя и области применения, тепловая защита может также выполнять другие функции, например, предотвращать двигатель от разрушающей температуры в частотном преобразователе, если он установлен на двигателе.

Тип тепловой защиты зависит от типа двигателя. Конструкция двигателя вместе с его энергопотреблением должны быть приняты во внимание при выборе типа тепловой защиты. В общем говоря, двигатели должны быть защищены в следующих ситуациях:

1) Неисправности вызывающие медленный нагрев обмоток двигателя:

  • длительная перегрузка
  • длительный период пуска
  • уменьшенное охлаждение/ недостаточное охлаждение
  • повышение температуры окружающей среды (в помещении)
  • частые пуски и остановы
  • колебания частоты сети
  • колебания напряжения питания

2) Неисправности вызывающие быстрый нагрев обмоток двигателя:

  • блокировка ротора
  • пропадание (обрыв) фазы

Тепловая защита(TP)

В соответствии с европейским стандартом IEC 60034-11, тип тепловой защиты двигателя должен быть указан на заводской табличке (шильдике) с обозначением TP.

Таблица1.4.19 показывает обзор обозначений тепловой защиты.

(1-я цифра)

функции

срабатывания

(2-я цифра)

(3-я цифра)

Индикация уровней допустимой температуры, при которой срабатывает тепловая защита, защищающая двигатель.

Табл. 1.4.19. Обозначения тепловой защиты.

Термисторная защита (PTC)

Термисторы PTC (с положительным температурным коэффициентом — Positive Temperature Coefficient) могут быть встроены в обмотки двигателя на производстве или установлены позже в качестве модернизации. Обычно 3 термистора PTC установлены последовательно: по одному в каждой фазной обмотке двигателя. Они могут быть различными: с температурами срабатывания от 90°C до 180°C с шагом в 5 градусов. Термисторы PTC должны быть подключены к реле термисторной защиты, которое улавливает мгновенный рост сопротивления термистора, в момент, когда он нагревается до своей температуры срабатывания. Эти устройства (усилители сигнала) не линейны. При температуре окружающей среды сопротивление комплекта из 3-х термисторов будет равняться 200-300 Ом и оно мгновенно возрастет в тот момент, когда термистор достигнет температуры срабатывания.

Если температура возрастает далее, сопротивление термистора PTC может достигнуть несколько тысяч Ом. Реле термисторной защиты обычно устанавливают на сопротивление срабатывания 3000 Ом или менее, согласно европейскому стандарту DIN 44082. Обозначение тепловой защиты для термисторов PTС для двигателей мощностью менее 11 кВт- TP211, если термисторы PTC встроены в обмотки на заводе-изготовителе. Если термисторы PTC установлены после изготовления двигателя (модернизация) — то тепловая защита обозначается как TP111. Обозначение тепловой защиты для PTC в двигателях мощностью более 11 кВт — TP111.

Термовыключатель (термоконтакт) или термостаты

Термоконтакты — это маленькие биметаллические контакты, которые отключаются при нагреве. Термоконтакты производятся с различными температурами срабатывания, обычно открытого и закрытого типа. Наиболее популярный тип — это закрытый термоконтакт. Один или два последовательно подключенных термоконтакта встраиваются в обмотки двигателя. Термоконтакты должны быть подключены непосредственно в разрыв цепи катушки пускателя. В этом случае нет необходимости в использовании дополнительного реле. Данный тип защиты более дешевый по сравнению с термисторной (PTC), но с другой стороны, менее чувствительный и не способен уловить внезапную перегрузку при блокировке ротора. К термоконтактам относятся такие типы тепловой защиты как датчики Thermik, Klixon и PTO (Protection Thermique à Ouverture). Термоконтакты всегда обозначаются как TP111.

Однофазные двигатели

Однофазные двигатели стандартно поставляются с встроенной тепловой защитой . Тепловая защита обычно имеет принцип автоматического перезапуска , то есть включения двигателя. Это означает, что двигатель должен быть подключен к питанию таким способом , чтобы избежать автоматического включения двигателя.

Трехфазные двигатели

Трехфазные двигатели должны быть защищены согласно местным нормам и правилам. Этот тип двигателей обычно имеют встроенные контакты для повторного пуска двигателя с помощью внешней цепи управления.

г. Киев, ул. Азербайджанская, 25, офис 31

  • (044) 566-22-64
  • (050) 450-05-15
  • (050) 450-05-11

Тепловая защита электродвигателя. Электротепловое реле.

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Инструкция по выбору теплового реле для защиты электродвигателя

  • Методика выбора
  • Что делать, если паспортные данные не известны?

Методика выбора

Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.

Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.

Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.

Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.

Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.

Что делать, если паспортные данные не известны?

Для этого случая рекомендуем использовать токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Кстати, недавно мы рассмотрели принцип действия и устройство тепловых реле, с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Напоследок рекомендуем просмотреть полезное видео по теме:

Надеемся, прочитав нашу статью, вам стало понятно, как выбрать тепловое реле для двигателя по номинальному току, а также мощности самого электродвигателя. Как вы видите, условия выбора аппарата не сложные, т.к. можно без формул и сложных вычислений подобрать подходящий номинал, используя таблицу!

Советуем также прочитать:

Тепловая защита двигателя

Перегрузка электродвигателя – распространенная причина поломки. Чтобы не допустить выхода из строя дорогостоящего оборудования и простоя в работе промышленного предприятия применяется тепловая защита двигателя. О чем именно идет речь? Как правильно подобрать тепловую защиту? Какие есть виды тепловых реле? Ответы на эти вопросы в нашей статье.

Тепловая защита электродвигателя: особенности устройства

Тепловое реле защиты двигателя – один из распространенных вариантов решения проблемы с перегрузками. Устройства срабатывают в том случае, если продолжительность перегрузки выходит за установленный лимит. Отключение прибора происходит и в момент обрыва одной из фаз.

Набор расцепителей из биметалла – основная конструкционная особенность теплового реле. По пластинам проходит ток двигателя. Нагрев и, как следствие, изгиб пластины происходит при перегреве.

Что же греет биметалл, устойчивый к механическим нагрузкам? Повышенное напряжение. Если имеет место быть скачок напряжения (продолжительный по времени), то искривленная под воздействием высокой температуры пластина приводит в действие механизм реле. Говоря более простыми словами, сработает тепловая защита, которая и разомкнет цепь.

Наличие температурных компенсаторов позволяет нивелировать воздействие температур окружающей среды. Учитывая, что большинство промышленных электродвигателей эксплуатируются в сложных условиях (повышенная температура рабочего пространства – один из примеров), наличие компенсаторов обуславливается серьезной необходимостью.

При каких условиях происходит срабатывание тепловой защиты двигателя? При перегрузке более чем на 20 % от номинального значения.

Место установки реле зависит от конструкции устройства. Допускается монтаж на корпус пускателя или на щит. Распространенной остается практика установки теплового реле непосредственно на сам магнитный пускатель.

Отметим, что тепловая защита помогает уберечь двигатель не только при перегрузках. Она срабатывает при перекосе фаз или затянутом пуске.

Особенности схемы тепловой защиты двигателя

Говорить о том, что существует единственно верная схема подключения, – неправильно. Практика показывает, что схемы тепловой защиты двигателя зависят от технических характеристик прибора и особенностей (количества) подключаемых устройств. Приветствуется подключение реле через катушку с пускателем. В этом случае при перегрузках устройство срабатывает быстрее. Отключение от электропитания предотвращает перегрев и работу на максимальных показателях. Как следствие — резерв работы электродвигателя увеличивается.

Тепловая защита двигателя: виды реле

Перед тем, как приступать к выбору теплового реле, стоит детально ознакомиться с существующими видами защитного устройства.

В специализированных магазинах можно купить тепловое реле следующих видов:

  • РТТ. Подойдет для эффективной защиты асинхронных двигателей.
  • РТЛ. Устройство хорошо себя зарекомендовало при несимметричности тока (как вариант, при выпадении одной из фаз).
  • Реле ТРН. Такой вид реле можно использовать при постоянном токе.
  • РТИ. Отличается собственным электропотреблением (хорошая защита при затянутом пуске).

Выбор во многом зависит от особенностей эксплуатации электродвигателя. Необходимость в установке теплового реле существует в случае наличия угрозы выхода его из строя при перепадах напряжения. Даже если угроза потенциальная, рисковать все равно не стоит.

Защита дорогостоящего промышленного оборудования обойдется дешевле, чем покупка новых агрегатов. Более того, остановка двигателя непременно приведет к простою в работе и дополнительным расходам.

Практика показывает, что тепловое реле помогает ограничить время запуска двигателя при пониженном напряжении.

Для корректного выбора ознакомьтесь с техническими характеристиками реле. Всю информацию можно найти в инструкции по эксплуатации, прилагаемой к устройству. Если у вас есть затруднения при расшифровке маркировки, обратитесь к специалистам — они помогут разобраться, чтобы определиться с выбором. Особенно если двигатель работает во взрыво- или пожароопасной производственной атмосфере. В этом случае его перегрев может стать причиной серьезной технологической аварии.

Правила установки теплового реле

Исправно работающее тепловое реле не всегда корректно функционирует. Например, под воздействием внешней температуры механизм может разомкнуть цепь. И наоборот. Если двигатель хорошо вентилируется, то даже в случае повышенного напряжения реле не сработает.

Для обеспечения правильности работы защитного механизма при его установке стоит придерживаться следующих правил:

  1. Сама защита и двигатель должны находиться в одном помещении.
  2. Устанавливать реле требуется вдали от источников тепла или вентиляторов.
  3. Необходимо учесть реальную температуру в помещении в процессе настройки прибора.
  4. Рекомендуется изначально установить максимальную температуру, допустимую без срабатывания реле.

Тепловая защита электродвигателя требует повышенного внимания и профессионального подхода. От правильной ее реализации зависит стабильная работа электрических приборов и всего предприятия в целом.

Высококачественные реле тепловой защиты двигателя по привлекательным ценам всегда можно подобрать в нашем интернет-магазине — самостоятельно, или обратившись к нашим специалистам.

  • Роботизация производственных линий
  • Роботехническая лаборатория
  • Системы технического зрения
  • Обязательная маркировка товаров
  • Автоматизация производства
  • Модернизация производства
  • Комплексная поставка оборудования
  • Программирование промышленных контроллеров
  • Сборка электрощитов управления
  • Диагностика и ремонт оборудования
  • Пищевая промышленность
  • Упаковка и маркировка
  • Обрабатывающая промышленность
  • Техническая консультация специалистов
  • Предпроектный анализ объекта управления
  • Составление технического задания
  • Разработка проекта
  • Заказ и поставка оборудования
  • Тестирование оборудования
  • Разработка проектной документации
  • Монтаж и пусконаладка АСУ на объекте
  • Обучение персонала заказчика
  • Гарантийное и послегарантийное обслуживание
  • Ремонт вышедшего из строя оборудования
  • Срочный ремонт и замена оборудования
  • Пищевая промышленность
  • Упаковка и маркировка
  • Обрабатывающая промышленность
  • OMRON
  • Schneider Electric
  • SICK
  • EATON
  • YASKAWA
  • Delta
  • SIEMENS
  • ABB
  • Bussmann
  • Обучение
  • Статьи
  • Новости
  • О нас
  • Наши клиенты
  • Отзывы
  • Сертификаты
  • Контакты
  1. Любая информация, переданная Сторонами друг другу при пользовании ресурсами Сайта (http://www.techtrends.ru), является конфиденциальной информацией.
  2. Пользователь дает разрешение Администрации Сайта на сбор, обработку и хранение своих личных персональных данных, а также на рассылку текстовой и графической информации рекламного характера.
  3. Стороны обязуются соблюдать данное соглашение, регламентирующее правоотношения связанные с установлением, изменением и прекращением режима конфиденциальности в отношении личной информации Сторон и не разглашать конфиденциальную информацию третьим лицам.
  4. Администрация Сайта собирает два вида информации о Пользователе:

— персональную информацию, которую Пользователь сознательно раскрыл Администрации Сайта в целях пользования ресурсами Сайта;
— техническую информацию, автоматически собираемую программным обеспечением Сайта во время его посещения.

Способы защиты электродвигателей

Верный признак того, что с двигателем происходит что-то неладное — значительное повышение температуры корпуса. Причины перегрева могут быть разные:

  • выход за пределы параметров питающего напряжения
  • неправильное подключение схемы питания
  • электрическая неисправность двигателя
  • механическая неисправность двигателя
  • перегрузка электродвигателя со стороны нагрузки
  • несоответствие условий окружающей среды

Рассмотрим различные способы защиты электродвигателя от перегрева и связанного с ним понижения механической мощности.

Защита от перегрузки

Перегрузка приводит к повышению тока обмоток. Если ток превысит номинальное значение для данного двигателя и условий работы, привод начнет перегреваться.

Для защиты от перегрузки по току используют тепловые реле и автоматы защиты. Настройка защитного устройства должна проводиться в соответствии с номинальным током двигателя. Если в нормальном режиме двигатель работает на мощности ниже номинальной, уставку теплового реле или автомата защиты целесообразно понизить, измерив рабочий ток привода.

Защита от короткого замыкания

Короткое замыкание (КЗ) может произойти не только в обмотке двигателя, но также в коробке с клеммами, в питающем кабеле или пусковой схеме. По этой причине целесообразно устанавливать защиту от КЗ на вводе питания пускателя. Обычно применяют предохранители и защитные автоматы, причем трехполюсные автоматы предпочтительнее, поскольку в случае аварии они полностью отключают питание от электродвигателя — при коротком замыкании срабатывает электромагнитный расцепитель.

Выход за пределы параметров питающего напряжения

Согласно ГОСТ 28173, электродвигатели могут эксплуатироваться при отклонении напряжения ±5% или отклонении частоты ±2%. При выходе за эти диапазоны мощность двигателя окажется ниже номинальной, поскольку температура обмоток статора может быть слишком высока.

Уровень напряжения контролируется с помощью реле контроля фаз, которые могут отключать двигатель в случае выхода напряжения по любой из фаз за установленные пределы. Дополнительные функции реле – контроль обрыва, чередования и асимметрии фаз.

Существуют также специализированные реле защиты двигателя, которые могут контролировать множество других параметров – перегруз или недогруз двигателя, асимметрию токов, перегрев и др.

Особенности защиты при питании двигателя через преобразователь частоты, где напряжение и частота значительно отклоняются от номинала, будут рассмотрены ниже.

Защита от перегрева

Источник перегрева может находиться в обмотке статора, в роторе, подшипниках, в месте электрического подключения. Во всех перечисленных случаях тепловая энергия выделяется на корпусе электродвигателя. Как правило, источником нагрева является обмотка, поэтому температурные датчики обычно устанавливают около нее, в лобовой части двигателя, которая меньше всего охлаждается вентилятором обдува.

В качестве датчиков используют полупроводниковые PTC терморезисторы (термисторы или позисторы). Термисторная защита наиболее эффективна, поскольку реагирует на все возможные причины возникновения перегрева — заклинивание подшипников или нагрузки (быстрое нагревание), перегрузка, обрыв фазы или плохое охлаждение (медленное нагревание).

Стандартное сопротивление позистора при температуре +25°С должно быть не более 300 Ом. При повышении температуры до пороговой сопротивление резко возрастает до значений более 2 кОм.

Если электродвигатель расположен в ответственном месте, целесообразно установить несколько датчиков внутри него и на корпусе с целью постоянного мониторинга и быстрого реагирования на внештатные ситуации.

Для защиты от перегрева корпуса очень важно обеспечить правильную работу воздушного охлаждения. В системе охлаждения используется вентилятор обдува, крыльчатка которого насажена на вал электродвигателя. Эффективность обдува снижается с повышением температуры окружающей среды. Рабочая мощность двигателя может быть равна номинальной при температуре среды не выше 40°С.

При повышении температуры воздуха мощность на валу должна быть снижена, иначе двигатель начнет перегреваться. Так, при температуре окружающей среды +60°С мощность не должна превышать 82% от номинала.

На перегрев двигателя также влияет высота его установки над уровнем моря. Это связано с меньшей эффективностью отбора тепла воздушным потоком на больших высотах. Например, если на высотах до 1000 м рабочая мощность может быть равна номинальной, то на высоте 4000 м мощность необходимо снизить до 80%.

На большой высоте и при высокой температуре окружающей среды можно не понижать механическую мощность , если обеспечить принудительное интенсивное охлаждение. Более того, при интенсивном охлаждении и нормальных условиях работы можно добиться мощности выше номинала. В таких случаях нужно уделить особое внимание мониторингу температуры двигателя.

Защита двигателя при использовании частотного преобразователя

Преобразователь частоты – это электронное устройство, способное реализовать программно или аппаратно различные виды защиты.

Частотный преобразователь позволяет изменять скорость вращения вала. При этом изменяется не только частота питающего напряжения, но и величина напряжения. Важно правильно устанавливать рабочие точки на вольт-частотной характеристике двигателя.

В частном случае отношение напряжения к частоте является константой. Однако, исходя из принципов и задач регулирования, можно менять это отношение, изменяя форму кривой регулирования. Например, из-за понижения момента на низких частотах прибегают к увеличению минимального выходного напряжения, что, при злоупотреблении, может привести к перегреву.

При работе двигателя от частотного преобразователя, когда скорость вращения может быть гораздо меньше номинала, необходимо устанавливать принудительное независимое воздушное охлаждение.

0 0 голоса
Рейтинг статьи
Читать еще:  Что нужно знать, если вы желаете занять вакансию электрика
Ссылка на основную публикацию
ВсеИнструменты