Конденсаторы для запуска электродвигателя
Запуск трехфазных электродвигателей с помощью конденсаторов
Запуск трехфазных электродвигателей с помощью конденсаторов, подключая их к бытовой однофазной электросети, можно осуществлять только в исключительных случаях (когда нет возможности подключиться к трехфазной сети), поскольку в ней сразу возникает вращающееся магнитное поле, создающее условия для того, чтобы ротор вращался в статоре. Помимо прочего, этот режим позволяет достичь максимальной мощности и эффективности работы электромотора.
Для того чтобы достичь максимальной выходной мощности электродвигателя (максимум 70% сравнительно с трехфазным подключением), при подключении к домашней однофазной электросети совершают три обмотки по схеме «треугольник». При подключении по схеме «звезда» максимальная мощность достигает не более 50% от возможной. При однофазном подключении на два выхода создается возможность подключения фазы и ноля без третьей фазы, которую восполняет конденсатор.
От того, как сформирован третий контакт (через фазу или ноль), зависит направление вращения ротора. В режиме одной фазы достигается идентичность частоты вращения трехфазному режиму.
Как подключить электромотор с конденсатором
Асинхронные электромоторы мощностью до 1.5кВт, запускающиеся без нагрузки, требуют для своего подключения только рабочий конденсатор. Один конец конденсатора подключают к нулю, а второй – к третьему выходу треугольника. Для изменения направления вращения ротора подключение конденсатора ведут от фазы.
Если мотор сразу при запуске работает под нагрузкой или его мощность превышает 1.5кВт, в схему вводят пусковой конденсатор, включающийся в работу параллельно рабочему. Он включается всего на несколько секунд и увеличивает пусковой толчок во время старта. При кнопочном подключении пускового конденсатора остальную схему подключают от сети через тумблер или через кнопку с двумя фиксирующими положениями.
Для запуска подключают питание через тумблер или двухпозиционную кнопку, затем нажимают на пусковую кнопку и удерживают ее до запуска электромотора. По осуществлении запуска кнопку отпускают, и ее пружина размыкает контакты и отключает пусковую емкость.
Для реверсивного запуска трехфазных электродвигателей с помощью конденсаторов в сети 220В в схему вводят тумблер переключения, который служит для подключения одного конца рабочего конденсатора к фазе и к нулю.
Если мотор не запускается или слишком медленно набирает обороты, в схему вводят пусковой конденсатор, подключаемый через кнопку «Пуск». Обычно на схемах провода, предназначенные для подключения этой кнопки в режиме реверса, обозначаются фиолетовым цветом. Если реверс не нужен, кнопка с проводами и правый пусковой конденсатор в схему не вводятся. Для запуска двигателя, рассчитанного на 220В, конденсаторы не нужны.
Выбор конденсаторов для электромоторов
Для подключения трехфазных электромоторов к бытовой сети нужно использовать только модели типа МБГЧ, МБПГ, МБГО и БГТ с рабочим напряжением (U раб.) минимум 300 вольт. Обозначение и величина емкости конденсатора указываются на его корпусе.
Расчет емкости
- Для подключения звездой используют формулу Сраб.=2800х(I/U), а для подключения треугольником – Сраб.=4800х(I/U), где Сраб. – это емкость рабочего конденсатора в мкФ, I – потребляемый мотором ток (по паспорту), U – напряжение сети, равное 220 вольтам. Емкость пусковых конденсаторов, обычно превышающую емкость рабочих конденсаторов вдвое-втрое, подбирают экспериментальным путем.
- Расчет надо составлять на номинальную мощность, поскольку при работе в половину силы электромотор будет нагреваться. Для уменьшения тока в обмотке необходимо уменьшить емкость рабочего конденсатора. Если емкости не хватает до необходимой, электродвигатель будет развивать низкую мощность.
- Лучше всего начинать подбор конденсатора для трехфазного электродвигателя с наименьшего допустимого значения емкости, и постепенно увеличивать показатель до оптимальной величины.
- При долгой работе без нагрузки электромотор, переделанный с 380В на 220В, сгорит.
- После отключения агрегата на выводах конденсаторов долго сохраняется напряжение опасной величины, поэтому их надо ограждать во избежание случайного прикосновения.
- Необходимо разряжать конденсаторы каждый раз перед началом их эксплуатации.
- Трехфазный электромотор мощностью свыше 3кВт нельзя подключать к домашней электросети на 220 вольт, потому что при неправильно подобранной защите будет плавиться изоляция проводов и выбиваться пробки, в худшем случае возможно возгорание.
При соблюдении вышеперечисленных правил и рекомендаций подключение трехфазного электродвигателя к бытовой сети не представляет сложности. Не следует только забывать о технике безопасности.
Использование конденсатора в запуске электродвигателя
Если мы обратим свой взгляд на всевозможную технику, используемую в нашем в мире, то обнаружим, что в ней нередко используются электродвигатели асинхронного типа. Чтобы подобный электродвигатель вращался часто, необходимо наличие обязательного вращающегося магнитного поля. Подобные агрегаты отличаются:
- простотой
- малым уровнем шума
- хорошими характеристиками
- а также легкостью в эксплуатировании
Чтобы такое магнитное поле было создано, требуется трехфазная сеть. В случае этого в статоре электродвигателя достаточно расположить 3 обмотки, которые будут размещены под углом сто двадцать градусов относительно друг друга, после чего подключить к ним необходимое и соответствующее напряжение. Именно тогда круговое вращающееся поле станет способно вращать статор.
В быту же зачастую используются приборы у которых имеется только лишь однофазная электрическая сеть. Для таких приборов применяются наиболее распространённые в этой сфере однофазные двигатели асинхронного типа.
Когда мы помещаем в статор электродвигателя обмотку, то магнитное поле в ней сможет образоваться только конкретно при протекании переменного синусоидального тока. Это поле, тем не менее заставить ротор вращаться, к сожалению, не сможет. Чтобы произвести запуск двигателя , вам надо выполнить два действия. Во-первых, разместить на статоре дополнительную обмотку под углом 90 градусов относительно рабочие обмотки. А во-вторых включить фазосдвигающий элемент непосредственно последовательно с дополнительной обмоткой. Таким элементом может быть конденсатор.
Пусковые и рабочие типы подключения схем
Когда вы выполните требуемые действия, в электродвигателе возникнет круговое магнитное поле, соответственно и в роторе возникнут соответствующие токи. Взаимодействие тока и поля статора сможет привести к вращению ротора. Существует несколько способов подключения конденсаторов к электродвигателю.
В зависимости от способа различают разные типы схем. В этих схемах может использоваться, во-первых, пусковой конденсатор, во-вторых, рабочий конденсатор, а также одновременно пусковой и рабочий конденсатор сразу. При этом самым распространенным методом является подключение с пусковым конденсатором.
Использование пускового конденсатора
Когда мы производим запуск двигателя, тогда и включаются конденсатор и пусковая обмотка. Связано это с тем свойством, что агрегат продолжает своё вращение даже в том случае, когда отключают дополнительную обмотку. Для такого запуска чаще всего используют реле и кнопку.
Из-за того, что пуск однофазного электродвигателя с конденсатором происходит достаточно быстро, дополнительная обмотка часто работает весьма небольшое время . Благодаря этому для экономии её возможно выполнять из провода с относительно меньшим сечением, нежели сама основная обмотка. Чтобы предупредить и предотвратить перегрев дополнительной обмотки, в схему практически всегда добавляют термореле или же центробежный выключатель. Благодаря этим устройствам при наборе электродвигателем определенной скорости или при достижении сильного нагрева становится возможно регулирующее отключение .
Схема, которая использует пусковой конденсатор имеет довольно хорошие пусковые характеристики электродвигателя, но при этом рабочие характеристики несколько ухудшаются.
Преимущества схемы с рабочим типом элемента
Значительно более хорошие рабочие характеристики вы можете получить, если использовать схему с рабочим конденсатором. После запуска электродвигателя конденсатор в такой схеме не отключается. Правильный подбор конденсатора для однофазного электродвигателя может дать большие преимущества. Главное из них — это компенсация искажения поля и повышение КПД агрегата. Однако, как и следовало ожидать, в такой схеме ухудшаются пусковые характеристики.
Стоит учитывать также, что при выборе величины емкости искомого конденсатора для электродвигателя производится исходя из определенного тока нагрузки. Если ток изменяется относительно расчетного значения, то, следовательно, поле будет переходить от круговой к эллиптической форме, а вследствие этого характеристики агрегата будут ухудшаться. Для обеспечения высоких хороших характеристик, в принципе, необходимо только при изменении нагрузки электродвигателя изменить величину емкости конденсатора. Однако, это может чересчур усложнить схему включения.
Наиболее компромиссным вариантом решения данной задачи является выбор схемы, обладающей пусковым и рабочим конденсаторами одновременно. В такой схеме пусковые и рабочие характеристики будут средними относительно рассмотренных ранее схем. В целом же, если при подключении однофазного двигателя требуется важный большой пусковой момент, то в таком случае выбирается схема конкретно с пусковым элементом. Если же такая необходимость отсутствует, то соответственно, используется рабочий элемент.
Несколько общих советов по эксплуатации
При выборе схемы пользователь всегда имеет возможность выбрать ту схему, которая конкретно ему подходит. Однако, обычно же все выводы искомых обмоток выводы конденсатора для электродвигателя выведены в клеменную коробку.
Если вам надо модернизировать систему, а возможно что и самостоятельно сделать требуемый расчет конденсатора для вашего используемого однофазного двигателя, то можно дать вам совет. Исходить надо из того, что на каждый киловатт мощности вашего агрегата требуется гарантированно определённая емкость в 0,7 — 0,8 мкФ относительно рабочего типа или же, соответственно, в два с половиной раза большая емкость относительно типа пускового .
При проверке технического состояния двигателя нередко вы можете заметить, что после достаточно продолжительной работы появился посторонний шум и неприятная вибрация. Ротор же трудно проверить. Причиной может быть плохое состояние подшипника. Беговые дорожки оказались покрыты ужасной ржавчиной , царапинами , вмятинами . Повреждены некоторые шарики и сепаратор. Во всех этих случаях вам необходимо детально рассмотреть и устранить у вас имеющиеся неисправности. Тем не менее, при незначительном повреждении часто достаточно:
- внимательно и тщательно промыть подшипники бензином;
- затем смазать их;
- очистить корпус вашего двигателя от пыли и грязи.
Подключение электродвигателя через конденсатор: расчет и схема
Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.
Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.
Коротенько про трехфазные асинхронные электродвигатели
Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.
Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор — вращающаяся часть, статор неподвижная (на рисунке его не видно).
Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже — С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный — С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.
Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов — аналогично и при подключении электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.
работа трехфазного электродвигателя без одной фазы при постоянной нагрузке
Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.
А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.
почему для пуска от однофазной сети используют именно конденсаторы
Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.
На схеме мы видим, что обмотка разделилась на две ветви — пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.
Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.
А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.
Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.
как подключить электродвигатель через конденсатор
Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.
Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая — напротяжении всей работы двигателя.
конденсаторы для запуска электродвигателя
Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.
Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:
Рабочая емкость = 2800*Iном.эд/Uсети
Рабочая емкость = 4800*Iном/Uсети
Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.
В формулах выше Iном — это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети — напряжение питающей сети(
220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:
Например, напряжение сети
220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.
Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются — пусковыми.
Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.
Сохраните в закладки или поделитесь с друзьями
Как выбрать конденсатор для электродвигателя
Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.
Что такое конденсатор
Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.
Существует три вида конденсаторов:
- Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
- Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
- Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).
Как подобрать конденсатор для трехфазного электродвигателя
Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.
Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:
- k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
- Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
- U сети – напряжение питания сети, т.е. 220 вольт.
Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.
Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.
В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.
Как подобрать конденсатор для однофазного электродвигателя
Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.
Итак, как подобрать конденсатор для однофазного электродвигателя?
Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.
Есть несколько режимов работы двигателей подобного типа:
- Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
- Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
- Рабочий конденсатор + пусковой конденсатор (подключены параллельно).
Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.
Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.
Пусковой конденсатор для электродвигателя
Пусковой конденсатор – устройство, необходимое для стабильной работы электродвигателя. Он начинает работать непосредственно в момент старта электромотора, так как именно в это время на двигатель действует наибольшая нагрузка. Как только двигатель выходит на рабочую частоту, пусковой конденсатор отключается и больше не используется до следующего запуска. Он отвечает только за запуск двигателя под нагрузкой, также он обеспечивает сдвиг фаз меж пусковой и рабочей обмоткой.
Конструкция и назначение пускового конденсатора
Конденсатор представляет собой устройство, способное накапливать электрический заряд: он состоит из двух проводящих пластик, расположенных на небольшом отдалении друг от друга и разделенных диэлектрическим материалов. Все конденсаторы обладают несколькими характерными особенностями:
- Специальный материал выполняет функции диэлектрика. Для конденсаторов пускового типа эту роль часто играет оксидная пленка, которая наносится на электрод.
- Полярные накопители отличаются небольшими габаритными размерами, которые сочетаются с внушительной емкостью.
- Неполярные конденсаторы больше по размеру, однако их можно устанавливать в цепь, не учитывая полярность.
Пусковой конденсатор двигателя выполняет несколько функций: он повышает показатели магнитного потока и пусковой момент, в результате работоспособность электромотора улучшается. Если этого элемента нет в системе, срок эксплуатации двигателя значительно сокращается, в его работе намного раньше возникнут различные неполадки.
Схема подключения двигателя с пусковым конденсатором
Пусковой конденсатор для электродвигателя играет важную защитную роль, поэтому он является обязательным компонентом схемы. При сборке цепи питания необходимо учитывать несколько обязательных моментов:
- В цепи присутствует рабочий конденсатор, он используется в течение всего времени работы электродвигателя.
- Перед рабочим конденсатором предусматривается разветвление, идущее на выключатель. Он отвечает запуск электродвигателя.
- Пусковой конденсатор подключается к цепи после конденсатора. При подаче сигнала он успевает начать работать в течение нескольких секунд, в то время как ротор начинает набирать обороты.
- Электрическая цепь от обоих конденсаторов идет к электромотору.
Таким образом пусковой и рабочий конденсатор подключаются к цепи параллельно, но первый работает только несколько секунд до выхода двигателя на рабочий уровень показателей, а второй – в течение всего времени эксплуатации двигателя.
Помощь при выборе пусковых конденсаторов
АО «Электроинтер» поможет подобрать и купить пусковой конденсатор подходящей емкости. Сотрудники компании предоставят подробную информацию по работе электрической цепи и помогут определиться с выбором оборудования. Получите необходимые консультации специалистов, чтобы обеспечить стабильную работу двигателя и защитить его от износа.
142206, Московская область, г. Серпухов, ул. Чехова, 87
Назначение и подключение пусковых конденсаторов для электродвигателей
Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.
- Назначение и преимущества ↓
- Схемы подключения ↓
- Выбор пускового конденсатора для электродвигателя ↓
- Обзор моделей ↓
- Советы ↓
Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?
Все конденсаторы, в том числе и пусковые, имеют следующие особенности:
- В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
- Большая емкость при малых габаритных размерах – особенность полярных накопителей.
- Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.
Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.
Назначение и преимущества
Используются конденсаторы рассматриваемого типа в системе подключения асинхронного двигателя. В данном случае, он работает только на момент пуска, до набора рабочей скорости.
Наличие подобного элемента в системе определяет следующее:
- Пусковая емкость позволяет приблизить состояние электрического поля к круговому.
- Проводится значительное повышение показателя магнитного потока.
- Повышается пусковой момент, значительно улучшается работа двигателя.
Без наличия этого элемента в системе, срок службы двигателя значительно уменьшается. Это связано с тем, что сложный пуск приводит к определенным сложностям.
Преимущества сети, которая имеет подобный элемент, заключаются в следующем:
- Более простой пуск двигателя.
- Срок службы двигателя значительно больше.
Пусковой конденсатор работает на протяжении нескольких секунд на момент старта двигателя.
Схемы подключения
схема подключения электродвигателя с пусковым конденсатором
Большее распространение получила схема, которая имеет в сети пусковой конденсатор.
Данная схема имеет определенные нюансы:
- Пусковая обмоткаи конденсатор включаются на момент старта двигателя.
- Дополнительная обмотка работает небольшое время.
- Термореле включается в цепь для защиты от перегрева дополнительной обмотки.
При необходимости обеспечения высокого момента во время пуска, в цепь включается пусковой конденсатор, который подключается вместе с рабочим. Стоит отметить, что довольно часто его емкость определяется опытным путем для достижения наибольшего пускового момента. При этом, согласно проведенным измерениям, величина его емкости должна быть в 2-3 раза больше.
К основным моментам создания цепи питания электродвигателя, можно отнести следующее:
- От источника тока, 1 ветка идет на рабочий конденсатор. Он работает на протяжении всего времени, поэтому и получил подобное название.
- Перед ним есть разветвление, которое идет на выключатель. Кроме выключателя может использоваться и другой элемент, который проводит пуск двигателя.
- После выключателя устанавливается пусковой конденсатор. Он срабатывает в течение нескольких секунд, пока ротор не наберет обороты.
- Оба конденсатора идут к двигателю.
Подобным образом можно провести подключение однофазного электродвигателя.
Выбор пускового конденсатора для электродвигателя
Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.
Для проведения расчета следует знать и ввести нижеприведенные показатели:
- Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
- Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
- Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
- Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
- КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.
Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.
Провести подобный расчет можно самостоятельно.
Для этого можно воспользоваться следующими формулами:
- Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
- Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
- После вычисления тока можно найти показатель емкости рабочего конденсатора.
- Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.
При выборе, стоит также учесть нижеприведенные нюансы:
- Интервал рабочей температуры.
- Возможное отклонение от расчетной емкости.
- Сопротивление изоляции.
- Тангенс угла потерь.
Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.
Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:
- Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
- Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.
Обзор моделей
Существует несколько популярных моделей, которые можно встретить в продаже.
Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:
- Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
- Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
- Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.
Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.
Конденсаторы для запуска электродвигателя
Значит, имеет смысл приспособить электролитический конденсатор для пуска асинхронного двигателя.
За счет чего электролитический конденсатор имеет преимущество в емкости, перед не полярными конденсаторами, например, масляными.
Емкость конденсатора зависит, от площади активной поверхности и диэлектрика между ними, а размер его будет зависеть от оксидного слоя, который является диэлектриком. Оксидный слой очень тонкий достигает несколько атомных слоёв. Что позволяет уместить больше активной поверхности конденсатора на ед. площади. Электролит выполняет функцию частичного восстановления оксидного слоя при правильном подключении конденсатора с соблюдением полярности.
Вот и напрашивается ответ, почему нельзя включать полярный конденсатор в сеть переменного тока. Произойдет разрушение оксидного слоя диэлектрика из-за того, что в сети меняется полярность (+-) напряжения с частотой 50 Гц. Разрушится оксидный слой, уменьшится сопротивление, ток увеличится, конденсатор разогревается с выделением газа, произойдет короткое замыкание, сопровождением небольшого взрыва.
Теперь предстоит задача, как подключить электролитический конденсатор в сеть переменного тока, чтобы он не взорвался.
Конденсаторы выбираем по напряжению, не менее 300 – 350В. Конденсаторы подключаем парами, то есть одинаковой емкостью С1 и С2 должны быть например, 300мкФ. Как известно из курса физики, что при последовательном соединении конденсаторов, ёмкость двух конденсаторов будут меньше — меньшей ёмкости конденсатора. Например: (С1*С2)/(С1+ С2) = С(общ.)мкФ (300*300)/(300+300) = 150мкФ
В целях безопасной эксплуатации конденсаторной батареи на предмет взрыва, пусть не сильного, но все токи, её следует поместить в коробочку.
Выпрямительные диоды 1Д – 2Д выбираем по току и напряжению, например, диод Д112-10Х-10 рассчитан на ток 10А Uобр.max,В = 600В Темп.,С = +190С цена = 1 шт. 240.00 руб.
Вот необходимая информация есть, как сделать конденсаторный блок из электролитических конденсаторов.
Просмотр и ввод комментариев к статье