Назначение трансформатора тока
Трансформатор тока: назначение, основные понятия
Трансформатор тока – электромагнитный аппарат, который предназначен для понижения первичного тока до стандартного значения один или пять ампер, приемлемого для подключения измерительных приборов, токовых цепей счетчиков электрической энергии и устройств релейной защиты и автоматики.
В электроустановках всех классов напряжения существует общепринятое диспетчерское наименование трансформатора тока – ТТ-0,4кВ, ТТ-10кВ, ТТ-35кВ и т. п.
Первичная обмотка ТТ подключается в разрыв фазы, то есть по первичной обмотке течет ток нагрузки фазы. Существуют также трансформаторы тока проходного типа, которые одеваются на кабель или шину.
Для того, чтобы подключить ТТ, необходимо убедиться в том, что он соответствует параметрам электрической сети. Номинальное напряжение устанавливаемого ТТ должно соответствовать рабочему напряжению сети. Существует такое понятие как коэффициент трансформации, являющий собой отношение номинального первичного тока ко вторичному:
Как правило, в паспорте трансформатора тока указывается коэффициент трансформации дробью, где числитель – номинальный первичный ток, знаменатель – вторичный ток. Приведем пример: 400/5, то есть номинальные значения тока первичной обмотки — 400 А, вторичной обмотки – 5 А. Следовательно, при выборе трансформатора тока необходимо учесть максимальный ток нагрузки линии. То есть для присоединения с максимально возможной нагрузкой В 480 А, ТТ с коэффициентом трансформации 400/5 не подходит. В этом случае подходящим вариантом будет установка аппарата с KTT=600/5.
Меры безопасности при обслуживании трансформатора тока
Режим работы трансформатора тока близкий к режиму короткого замыкания. При размыкании вторичной обмотки аппарата происходит исчезновение размагничивающего тока, вследствие этого на выводах вторичной обмотки возникает ток первичной обмотки, что в конечном счете приводит к повреждению ТТ. Кроме того, в результате возникновения большого магнитного потока, во вторичной обмотке ТТ наводится электродвижущая сила величиной в несколько десятков киловольт, что влечет за собой повреждение изоляции вторичных цепей, устройств релейной защиты, автоматики, измерительных приборов, а также представляет опасность обслуживающему персоналу электроустановки.
Следовательно, категорически запрещается размыкать выводы вторичной обмотки трансформатора тока, они должны быть всегда подключены к токовым цепям устройств РЗиА, измерительных приборов или счетчиков электрической энергии. При возникновении необходимости замены измерительного прибора или токового реле, следует предварительно зашунтировать выводы вторичной обмотки. Если установка шунтирующей перемычки на работающем ТТ невозможна, то для замены прибора следует обесточить аппарат выводом присоединения в ремонт.
Все о трансформаторах тока. Классификация, конструкция, принцип действия
Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов (с больших на меньшие) до требуемых значений, с целью подключения приборов измерения, устройств РЗиА. Трансформаторы тока получили широкое применение в энергетике и являются составным элементом любой электростанции или подстанции.
Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.
- Конструкция и принцип действия трансформатора тока
- Классификация трансформаторов тока
- Трансформаторы тока разных производителей
- Трансформаторы тока ТОЛ-НТЗ-10-01
- Расположение вторичных выводов:
- Требования к надежности
- Пример условного обозначения опорного трансформатора тока с литой изоляцией
- Опорные трансформаторы тока TОП-0,66
- Проходные шинные трансформаторы тока для внутренней установки BB, BBO
Конструкция и принцип действия трансформатора тока
Трансформаторы тока конструктивно состоят из:
- замкнутого магнитопровода;
- 2-х обмоток (первичной, вторичной).
Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.
Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.
Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.
К этим обмоткам в обязательном порядке должна быть подключена нагрузка.
Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.
Интересное видео о трансформаторах тока смотрите ниже:
Погрешность ТТ определяется в зависимости от:
- сечения магнитопровода;
- проницаемости используемого для производства магнитопровода материала;
- величины магнитного пути.
Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.
Предельное значение сопротивление нагрузки указывается в справочных материалах.
Классификация трансформаторов тока
Трансформаторы тока принято классифицировать по следующим признакам:
- В зависимости от назначения их разделяют на:
- защитные;
- измерительные;
- промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
- лабораторные.
- По типу установки разделяют устройства:
- наружной установки (размещаемые в ОРУ);
- внутренней установки (размещаемые в ЗРУ);
- встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
- накладные — устанавливаемые сверху на проходные изоляторы;
- переносные (для лабораторных испытаний и диагностических измерений).
- Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
- многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
- одновитковые;
- шинные.
- По способу исполнения изоляции ТТ разбивают на устройства:
- с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
- с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
- имеющие заливку из компаунда.
- По количеству ступеней трансформации ТТ бывают:
- одноступенчатые;
- двухступенчатые (каскадные).
- Исходя из номинального напряжения различают:
- ТТ с номинальным напряжением — выше 1 кВ;
- ТТ с напряжением – до 1 кВ.
Ещё одно интересное видео о схемах включения трансформаторов тока:
Трансформаторы тока разных производителей
Рассмотрим несколько трансформаторов тока разных производителей:
Трансформаторы тока ТОЛ-НТЗ-10-01
Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.
Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.
Рабочее положение трансформатора в пространстве – любое.
Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:
- класс нагревостойкости «В» по ГОСТ 8865-93;
- уровень изоляции «а» и «б» по ГОСТ 1516.3-96.
Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.
Расположение вторичных выводов:
- «А» — параллельно установочной поверхности;
- «В» — перпендикулярно установочной поверхности;
- «С» — из гибкого провода, параллельно установочной поверхности;
- «D» — из гибкого провода, перпендикулярно установочной поверхности.
Требования к надежности
Для трансформаторов установлены следующие показатели надежности:
- средняя наработка до отказа – 2´105 ч.;
- полный срок службы – 30 лет.
Пример условного обозначения опорного трансформатора тока с литой изоляцией
ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2
- 10 — номинальное напряжение;
- «0» — конструктивный вариант исполнения;
- «1» — исполнение по длине корпуса;
- «А» — вторичные выводы расположенные параллельно установочной поверхности;
- «Б» — изолирующие барьеры;
- 0,5S — класс точности измерительной вторичной обмотки;
- (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
- 10Р — класс точности защитной вторичной обмотки;
- 10 — номинальная предельная кратность вторичной обмотки для защиты;
- 5 — номинальная вторичная нагрузка обмотки для измерения;
- 15 — номинальная вторичная нагрузка обмотки для защиты;
- 300 — номинальный первичный ток;
- 5 — номинальный вторичный ток;
- 31,5 — односекундный ток термической стойкости;
- «УХЛ» — климатическое исполнение;
- 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.
Опорные трансформаторы тока TОП-0,66
Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.
Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.
Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:
- высота над уровнем моря не более 1000 м;
- температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
- окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
- рабочее положение — любое.
Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.
Проходные шинные трансформаторы тока для внутренней установки BB, BBO
Изготовитель — Фирма ООО «ABB»
Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).
Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.
Трансформаторы спроектированы и изготовлены согласно следующим стандартам:
- МЭК, VDE, ANSI, BS, ГОСТ и CSN.
- Максимальное напряжение — 3.6 кВ — 25 кВ
- Первичный ток — 600 A – 5000 A
- Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
- Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
- Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.
Статьи
Трансформатор тока, их применение и правильное подключение 18.06.2014 01:56
Назначение и применение
Трансформаторы – электротехнические устройства, широко применяемые как в производственной, так и в бытовой сфере. При этом различают категории трансформаторов напряжения и трансформаторов тока.
Установка трансформатора тока осуществляется с целью преобразования значений переменного тока с высоких на первичной обмотке до малых на вторичной, что обеспечивает удобство и безопасность эксплуатации. Их используют при подключении приборов учета расхода электроэнергии (электросчетчиков) и других электроизмерительных приборов, а также устройств, обеспечивающих релейную защиту различных систем электроэнергетики.
Устройство и правильное подключение
Важнейшими конструкционными элементами трансформатора являются первичная и вторичная обмотки, а также магнитопровод, заключенные в единый корпус. При этом первичная обмотка выполняется обычно в один виток (обмотка более точных устройств имеет два витка), или представляет собой проходящую сквозь специальное окно силовую шину (трансформатор шинного исполнения).
Первичная обмотка подключается к источнику тока, вторичная – непосредственно к измерительным приборам и другим потребителям, характеризуемым малым значениям внутреннего сопротивления.
С целью предотвратить неверное подключение и, как следствие, последующую неисправность трансформатора тока либо подключаемых устройств, выводы трансформаторов маркируются буквенными и цифровыми обозначениями, как это показано на нижеприведенной схеме. Начало и конец первичной обмотки обозначают как Л1 и Л2 (линия), а начало и конец вторичной обмотки — как И1 и И2 (измерение). Обмотку напряжения необходимо подключать к проводам «фаза» и «ноль». С этой целью между выводами Л1 и И1 устанавливают специальную перемычку, а нулевой провод подсоединяют к третьему зажиму.
Трансформатора тока (общая схема)
В высоковольтных трансформаторах тока напряжением 6-10 кВ и более устанавливается несколько групп вторичных обмоток, к одной из которых подключают устройство защиты, а к прочим, более точным, – приборы учета или измерения.
Вторичные обмотки трансформаторов тока при установке в три фазы соединяют по методу «Звезды» (рис.1), при двухфазной установке – по схеме «Неполной звезды» (рис.2).
Чаще всего используются трансформаторы с номинальными значениями первичного тока от 50 до 2000 А. Показатель вторичного тока в большинстве случаев составляет 5А.
Меры профилактики
Правильное подключение трансформатора тока – залог нормальной работы оборудования.
Электромонтаж цепей тока и напряжения должен производиться сообразно Правилам Устройства Электроустановок. Согласно нормативным документам, сечение медного провода в токовых цепях должно быть не менее 2,5 кв. мм, в цепях напряжения — не менее 1,5 кв.мм.
Вторичные цепи трансформаторов тока должны в обязательном порядке быть заземлены. Это обеспечивает как сохранность самих приборов, так и безопасность людей.
Особенности эксплуатации
Каждый из трансформаторов тока должен обязательно подвергаться периодическим поверкам госповерителя и иметь на корпусе пломбу с соответствующим клеймом, а также отметку в техническом паспорте. Необходимо помнить об этом при установке нового трансформатора, следя за тем, чтобы на момент монтажа дата последующей госповерки не была просрочена. Поверка должна производиться регулярно, с интервалом в четыре-пять лет, в зависимости от марки трансформатора и его типа.
Принадлежность трансформатора к определенному классу предопределяет применение методики и установочного инструментария. Вместе с тем первичная установка или замена трансформатора тока регламентированы обязательными условиями работ, которые предусматривают соблюдение той или иной схемы подключения. Такие схемы могут различаться в зависимости от требований организации, на которую производителем и поставщиком возложены вопросы компетенции в сфере генерации и доставки электроэнергии потребителям. В частности, ряд определенных различий имеют схемы подключения от Ленэнерго и Сбытовой компании.
Петербургская сбытовая компания
Самый простой и одновременно наиболее надежный вариант установки трансформатора в бытовых условиях — вызов электрика на дом. Это позволит, не нарушая нормативные требования, квалифицированно и в точном соответствии со всеми предписаниями выполнить весь комплекс монтажных и электротехнических работ.
Компания ЭлектроТехников предлагает Вам любые электромонтажные работы начиная с установки осветительных систем и заканчивая работами по автоматизации технических процессов:
Замена эл. счетчика
Ремонт проводки ( замена проводки )
Установка эл. щита ( установка распределительного щита )
Установка розеток ( перенос розеток )
Проводка в квартирах ( проводка в коттеджах )
Назначение и классификация трансформаторов тока
Трансформатором тока (ТТ) называется измерительный аппарат, служащий для преобразования тока, у которого первичная обмотка включается в цепь последовательно, а вторичная — содержит измерительные приборы и реле защиты и автоматики.
Трансформатор тока — основное измерительное устройство в электроэнергетике. Оно отличается от применяемых в прибора низкого напряжения на сильные токи уровнем изоляции между первичной и вторичной обмотками. В ТТ первичная обмотка изолирована от вторичной на полное напряжение. Вторичная обмотка в эксплуатации имеет потенциал близкий к потенциалу земли, так как один конец этой обмотки обычно заземлен. С помощью ТТ можно измерять и учитывать ток высокого напряжения приборами низкого напряжения, доступными для непосредственного наблюдения персонала, и свести к измерению любого первичного тока, например 5 или 1А.
Измерительные ТТ отличаются от силовых ТТ следующими признаками:
Измерительный ТТ работает в условиях, близких к КЗ, так как сопротивление во вторичной цепи у него весьма мало. Этот режим является нормальным режимом работы, в то время как для силового ТТ режим работы КЗ является аварийным,
Индукция в измерительном ТТ непостоянна и определяется измеряемым током и режимом эксплуатации трансформатора, в то время как в силовом трансформаторе индукция постоянна;
Ток во вторичной цепи измерительного ТТ в известных пределах не зависит от нагрузочного сопротивления и в основном изменяется в соответствии с изменением первичного тока. В силовом ТТ первичный ток изменяется в зависимости от нагрузки вторичной обмотки.
Классификация трансформаторов тока
Все трансформаторы тока — и для измерений и для защиты — можно классифицировать по следующим основным признакам: по роду установки: трансформаторы для работы на открытом воздухе (категория размещения 1 по ГОСТ 15150-69), для работы в закрытых помещениях (тот же ГОСТ), для встраивания во внутренние полости электрооборудования (газовая среда, изолированная от наружного воздуха или трансформаторное масло, либо газовая среда не изолированная от наружного воздуха);
по способу установки: проходные ТТ, предназначенные для использования в качестве ввода и устанавливаемые в проемах стен, потолков, механических конструкциях; опорные, встраиваемые и т.д.;
по числу коэффициентов трансформации: с одним коэффициентом трансформации; с несколькими коэффициентами трансформации, получаемыми изменением числа витков первичной или вторичной обмотки, или обеих обмоток;
по числу ступеней трансформации: одноступенчатые; каскадные (многоступенчатые), т.е. с несколькими ступенями трансформации тока;
по выполнению первичной обмотки: одновитковые, многовитковые;
по роду изоляции между первичной и вторичными обмотками
ТТ: изготавливаются с твердой (фарфор, литая изоляция, прессованная изоляция, полимерная и т.д.); с вязкой (заливочные компаунды); с комбинированной (бумажно-масляная, конденсаторного типа) или газообразной (воздух, элегаз) изоляцией.
по принципу преобразования тока ТТ: электромагнитные и оптико-электронные.
Основные параметры и характеристики ТТ
В соответствии с ГОСТ 7746-78 «Трансформаторы тока. Общие технические требования» ими являются:
1. Номинальное напряжение — действующее значение линейного напряжения, при котором предназначен работать ТТ, указываемое в паспортной таблице ТТ. Для отечественных ТТ приняты следующие значения: 0,66; 6; 10; 15; 20; 24; 27; 286
35; 110; 150; 220; . 1150 кВ.
Номинальный первичный ток /1н (указан в паспорте) проходящий по первичной обмотке, при котором предусмотрено продолжительная работа ТТ. Шкала токов: 1; 5; 10; 15; 20; 30; . 1000; 1500; . 40 000 А.
Номинальный вторичный ток 12н (указан в паспортной таблице ТТ), проходящий во вторичной обмотке. Номинальный вторичный ток принимается равным 1 А (с номинальным первичным током до 4000 А) или 5 А. По согласованию с заказчиком допускается изготовление ТТ с /2р = 2 или 2,5 А.
Вторичная нагрузка ТТ Z2h — соответствует полному сопротивлению его внешней вторичной цепи, выраженному в омах, с указанием коэффициента мощности cos-фи = 0,8, при которой гарантируется установленный класс точности ТТ или предельная кратность первичного тока относительно его номинального значения, называемая номинальной вторичной нагрузкой ТТ Z2hhom. Для отечественных трансформаторов установлены следующие значения номинальной вторичной нагрузки 52н ном, выраженной в вольт-амперах, при коэффициенте мощности cos 1,8^1/1т;
для ТТ на номинальное напряжение 110, 150 и 220 кВ 1Я > 1,8 V2 IЗт;
для ТТ на номинальное напряжение до 35 кВ включительно 1л>1,8уП1Лт.
Температура токоведущих частей ТТ при прохождении тока термической стойкости не должна превышать:
200 °С для токоведущих частей из алюминия;
250 °С для токоведущих частей из меди и ее сплавов, соприкасающихся с органической изоляцией или маслом.
Механические нагрузки, определяемые давлением ветра со скоростью 40 м/с на поверхность ТТ и тяжением подводящих проводов, которое должно быть не менее:
500 Н для ТТ до 35 кВ включительно;
1000 Н для ТТ 110 — 220 кВ;
1500 Н для ТТ 330 кВ и выше.
В эксплуатации должны учитываться следующие требования к ТТ:
Контактные зажимы выводов первичной обмотки ТТ должны выполнятся с учетом требований ГОСТ 10434-76.
Обозначение концов первичных и вторичных обмоток согласно ГОСТ 7746-78 должно производится в соответствии с табл. 1. Линейные выводы первичной обмотки обозначаются символами JIi и JI2, которые должны наноситься так, чтобы при направлении тока в первичной обмотке от Л^ и Н^ соответственно к Кг и JI2 вторичный ток проходил по внешней цепи (приборам) от Ил к И2.
Маслонаполненный трансформатор тока должен иметь маслорасширитель (компенсатор) и указатель уровня масла. Вместимость маслорасширителя должна обеспечить постоянное наличие в нем масла при всех режимах работы ТТ от отключенного состояния до нормированной токовой нагрузки и при колебаниях температуры окружающего воздуха, установленных для данного климатического района. В ТТ на номинальное напряжение 330 кВ и выше обязательно должна быть предусмотрена защита масла от увлажнения, например посредством сильфонов.
Таблица 1
Размеры указателя уровня масла должны быть такими, чтобы обслуживающий персонал мог с безопасного расстояния наблюдать за уровнем масла в ТТ.
Трансформаторы, имеющие массу более 50 кг, должны иметь приспособления для подъема. Если такие приспособления невозможно выполнить, завод-изготовитель должен указывать в инструкции места захвата ТТ при подъеме.
ТТ, у которых амплитуда напряжения на разомкнутой вторичной обмотке при номинальном токе в первичной обмотке превышает 350 В, должны иметь надпись: «Внимание! Опасно! На разомкнутой обмотке высокое напряжение».
Трансформаторы, кроме встроенных, должны иметь контактную площадку для присоединения заземляющего проводника и заземляющий зажим в соответствии с требованиями ГОСТ 21130-75.
Трансформаторы тока и напряжения
Перед тем, как рассказать об измерительных трансформаторах – немного теории. Трансформатор – элемент электрической цепи, преобразующий величину переменного напряжения. Трансформаторы могут быть:
- понижающими, выдающие на выходе меньшее напряжение, чем на входе;
- повышающими, выполняющие противоположное преобразование;
- разделительные, не изменяющие величину напряжения, применяющиеся для гальванической развязки между участками электрической сети.
Повышающие и понижающие трансформаторы обратимы: если подать номинальное выходное напряжение трансформатора на его вторичную обмотку, на первичной мы получим номинальное входное напряжение.
С токами в обмотках происходит обратная картина. Первичная обмотка рассчитывается на ток, соответствующий номинальной мощности трансформатора. Под мощность выбирается и сечение магнитопровода, и диаметр обмоточного провода первичной обмотки.
Ток вторичной обмотки понижающего трансформатора может быть больше тока в первичной во столько раз, во сколько меньше ее напряжение. Это отношение называется коэффициентом трансформации. Поэтому сечение обмоточного провода вторичной обмотки у понижающего трансформатора больше. У понижающего – все наоборот. У разделительного – все одинаково.
- Зачем нужны измерительные трансформаторы напряжения
- Трансформаторы напряжения и их конструкция
- Зачем нужны трансформаторы тока
- Принцип действия и конструкция трансформаторов тока
- Видео про трансформаторы тока
Зачем нужны измерительные трансформаторы напряжения
В электроустановках до 1000 В измерение напряжения производят, подключая вольтметры непосредственно к шинам или другим контролируемым участкам сети. Но в сетях 6 кВ и выше это невозможно, потому что:
- при измерении высокого напряжения требуется понизить его величину до размера, воспринимаемого рамкой стрелочного прибора или электронным преобразователем цифрового. Резистивные делители не выполнят задачу с требуемой точностью, а применение понижающего трансформатора сделает прибор громоздким;
- изоляция проводников для подключения прибора должна выдерживать номинальное напряжение электроустановки. Кроме того, должны соблюдаться междуфазные расстояния, требуемые ПУЭ. Выполнить это невозможно.
Трансформатор напряжения НОЛ
Поэтому для измерений величину напряжения понижают, и для этого нужен трансформатор напряжения
Трансформаторы напряжения и их конструкция
На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В. Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более. Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.
Конструктивно трансформаторы напряжения выполняются:
- элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
- один корпус содержит трансформатор для преобразования всех трех фаз.
Трехфазный трансформатор напряжения НАМИ
Первичные обмотки трехфазных трансформаторов соединяются в звезду.
Вторичных обмоток у трансформаторов напряжения несколько:
- обмотка для приборов учета, имеющая класс точности 0,5s;
- обмотка для измерительных приборов – класс точности 0,5;
- обмотка для устройств релейной защиты – класс 10Р;
- обмотка для разомкнутого треугольника – класс 10Р.
Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность, превышать которую нельзя.
Трансформатор напряжения НОМ-10
Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников. Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.
Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.
Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.
Три однофазных трансформатора ЗНОЛ, собранные вместе
А теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации. Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением. Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.
Зачем нужны трансформаторы тока
Одна из причин, из-за которых в электроустановках выше 1000 В устанавливают трансформаторы тока – та же, что и для трансформаторов напряжения. Невозможно обеспечить изоляцию цепей для подключения приборов.
Но есть дополнительные факторы, вынуждающие использовать их и в электроустановках выше 1000 В:
- максимальный ток, на который рассчитаны электросчетчики прямого включения – 100 А. Токи выше 100 А требуется понизить.
- включение амперметров последовательно с нагрузкой снижает надежность электроснабжения;
- вольтметр подключается к шинам через предохранители или автоматический выключатель, выводы амперметра защитить невозможно. Ток короткого замыкания в амперметре равен току КЗ на шинах. Ошибки в эксплуатации приводят к тяжелым последствиям, а неисправности прибора выводят его из строя навсегда. Поэтому и требуется выполнить гальваническую развязку амперметра с сетью.
- Заменить амперметр прямого подключения можно, только отключив нагрузку.
Принцип действия и конструкция трансформаторов тока
Трансформатор тока тоже имеет первичную и вторичную обмотку. Но особенность его в том, что первичная обмотка имеет один или несколько витков, а в большинстве изделий представляет собой шину, проходящую через корпус трансформатора. Вариант – трансформаторы, не имеющие собственной первичной обмотки. Они надеваются на шину с измеряемым током или через них пропускается провод, жила кабеля.
Варианты конструктивного исполнения трансформаторов тока до 1000 В
Вторичная обмотка у трансформатора тока на напряжение до 1000 В одна, но у высоковольтных их – минимум две, но бывает и больше. Работает он аналогично повышающему трансформатору, поэтому – все, что сказано в начале статьи о соотношении токов в них для него справедливо.
Номинальный ток вторичной обмотки трансформатора тока всегда равен 5 А, на какой бы ток не была рассчитана первичная. Классы точности обмоток для подключения аппаратуры различаются так же, как и у трансформаторов напряжения.
Но вот подключить к трансформатору тока, используемому для учета электроэнергии, ничего больше не получится. По правилам, кроме счетчика, там не должно быть ничего. И если для аппаратов выше 1000 В это требование легко выполнить (один трансформатор имеет несколько обмоток), то для электроустановок до 1000 В при необходимости устанавливают по два трансформатора на одну фазу: один – для учета, другой – для всего остального (амперметры, ваттметры, устройства защиты, компенсация реактивной мощности). Выводы вторичной обмотки для коммерческого учета у всех трансформаторов закрываются крышкой и пломбируются.
Установка трансформаторов тока в ячейке выше 1000 В
Трансформатор тока должен работать в замкнутой на нагрузку или накоротко вторичной обмоткой. Иначе на ней наводится ЭДС далеко не безопасной величины как для людей, так и для электрооборудования. При обрыве во вторичных цепях можно получить смертельный удар током, даже проведя рукой рядом с клеммами амперметра или счетчика. А электронные схемы на входе приборов выйдут из строя под действием высокого напряжения.
Поэтому для замены амперметров и электросчетчиков в токовых цепях устанавливают специальные клеммы, на которых перед демонтажем прибора обмотку трансформатора закорачивают. Для приборов учета рядом устанавливают клеммы для отключения цепей напряжения. Это функции совмещены в специальном устройстве, называющимся «колодка клеммная измерительная». Для коммерческих цепей учета эти коробки пломбируются, для чего винт, крепящий ее крышку, имеет прорезь в головке (как у винтов крепления крышки корпуса электросчетчика).
Видео про трансформаторы тока
Почему нельзя размыкать вторичную обмотку трансформатора тока и зачем ее обязательно заземлять? Попутно вы узнаете о технических характеристиках и конструкции трансформаторов тока, особенностях их применения.
Трансформаторы тока. Виды и устройство. Назначение и работа
В системе обеспечения электрической энергией трансформаторы выполняют различные функции. Конструкции классического вида применяются для изменения определенных свойств тока до значений, наиболее подходящих для осуществления измерений. Существуют и другие виды трансформаторов, которые выполняют задачи по корректировке свойств напряжения до значений, подходящих наилучшим образом для последующего распределения и передачи электроэнергии. Трансформаторы тока согласно своему назначению имеют особенности конструкции, и перечень основных и вспомогательных функций.
Назначение
Основной задачей такого трансформатора является преобразование тока. Он корректирует свойства тока с помощью первичной обмотки, подключенной в цепь по последовательной схеме. Вторичная обмотка измеряет измененный ток. Для такой задачи установлены реле, измерительные приборы, защита, регуляторы.
По сути дела, трансформаторы тока – это измерительные трансформаторы, которые не только измеряют, но и осуществляют учет с помощью приборов. Запись и сохранение рабочих параметров тока нужно для рационального применения электроэнергии при ее транспортировке. Это одна из функций трансформатора тока. Модели конструкций бывают преобразующего типа и силовые варианты исполнений.
Устройство
Обычно все варианты исполнений трансформаторов подобного вида снабжены магнитопроводами с вторичной обмоткой, которая при эксплуатации нагружена определенными значениями параметров сопротивления. Выполнение показателей нагрузки важно для дальнейшей точности измерений. Разомкнутая цепь обмотки не способна создавать компенсации потоков в сердечнике. Это дает возможность чрезмерному нагреву магнитопровода, и даже его сгоранию.
С другой стороны, магнитный поток, образуемый первичной обмоткой, имеет отличие в виде повышенных эксплуатационных характеристик, что также приводит к перегреву магнитопровода. Сердечник трансформатора тока изготавливают из нанокристаллических аморфных сплавов. Это вызвано тем, что трансформатор может работать с более широким интервалом эксплуатационных величин, которые зависят от класса точности.
Отличие от трансформатора напряжения
Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.
Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.
Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.
Виды
Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:
- Сухие.
- Тороидальные.
- Высоковольтные (масляные, газовые).
У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.
Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.
Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.
Принцип работы и применение
При эксплуатации в цепях с большим током появляется необходимость использовать небольшие устройства, которые бы помогали контролировать нужные параметры тока бесконтактным методом. Для таких задач широко применяются токовые трансформаторы. Они измеряют ток, а также выполняют много вспомогательных функций.
Такие трансформаторы производятся в значительном количестве и имеют разные формы и модели исполнения. Отличительными параметрами этих устройств является интервал измерения, класс защиты устройства и его конструкция.
В настоящее время новые трансформаторы тока работают по простому методу, который был известен в то время, когда появилось электричество. При действии с нагрузкой в проводе образуется электромагнитное поле, улавливающееся чувствительным прибором (трансформатором тока). Чем сильнее это поле, тем больший ток проходит в проводе. Нужно только рассчитать коэффициент усиления прибора и передать сигнал в управляющую цепь, либо в цепь контроля.
Трансформаторы выполняют функцию рамки на силовом проводе и реагируют на значение сети питания. Современные измерительные трансформаторы выполнены из большого числа витков, имеют хороший коэффициент трансформации. Во время настройки устройства определяют вольтамперные свойства для расчета точки перегиба кривой. Это нужно для выяснения участка графика с интервалом устойчивости функции трансформатора, который также имеет свой коэффициент усиления.
Кроме задач измерения, измеритель дает возможность разделить цепи управления и силовые цепи, что является важным с точки зрения безопасности. Применяя современные трансформаторы тока, получают сигнал небольшой мощности, не опасный для человека и удобный в работе.
В качестве нагрузки такого устройства может быть любой прибор измерения, который может работать с ним. При большом расстоянии оказывает влияние внутреннее сопротивление линии. В этом случае прибор калибруют. Также, сигнал можно передавать в цепь защиты и управления на основе электронных приборов.
С помощью них производят аварийное отключение линий. Приборы производят контроль сети, определяют нужные параметры. При проектировании встает задача по подбору прибора для измерения и контроля. Трансформаторы выбирают по средним параметрам сети и конструкции прибора измерения. Чаще всего мощные установки комплектуются своими измерительными устройствами.
На современном производстве широко применяются измерительные трансформаторы. Также они нашли применение и в обыденной жизни. Чувствительные приборы осуществляют защиту дорогостоящего оборудования, создают безопасные условия для человека. Они работают в электроцепях, создавая контроль над эксплуатационными параметрами.
Коэффициент трансформации
Этот коэффициент служит для оценки эффективности функционирования трансформатора. Его значение по номиналу дается в инструкции к прибору. Коэффициент означает отношение тока в первичной обмотке к току вторичной обмотки. Это значение может сильно меняться от числа секций и витков.
Нужно учитывать, что этот показатель не всегда совпадает с фактической величиной. Есть отклонение, определяемое условиями работы прибора. Назначение и метод работы определяют значения погрешности. Но этот фактор также не может быть причиной отказа от контроля коэффициента трансформации. Имея значение погрешности, оператор сглаживает ее аппаратурой специального назначения.
Установка
Простые трансформаторы тока, работающие на шинах, устанавливаются очень просто, и не требуют инструмента или техники. Прибор ставится одним мастером при помощи крепежных зажимов. Стационарные требуют оборудования фундамента, монтажа несущих стоек. Каркас крепится сваркой. К этому каркасу монтируется аппаратура. Комплект оснащения зависит назначение устройства и его особенности.
Подключение
Чтобы облегчить процесс соединения проводов с устройством, изготовители маркируют комплектующие детали цифровым и буквенным обозначением. С помощью такой маркировки операторы, которые обслуживают устройство, могут легко сделать соединение элементов.
Способ подключения взаимосвязан с устройством, принципом работы и назначением прибора. Также оказывает влияние и схема обслуживаемой сети. Трехфазные линии с нейтралью предполагают установку прибора только на двух фазах. Эта особенность вызвана тем, что электрические сети на напряжение 6-35 киловольт не оснащены нулевым проводом.
Контроль
Это мероприятие состоит из разных операций: визуальный осмотр, дается оценка всей конструкции, проверяется маркировка, паспортные данные и т.д. Далее, осуществляется размагничивание трансформатора с помощью медленного повышения тока на первичной обмотке. Далее, величину тока уменьшают.
Затем готовят главные мероприятия по измерению параметров. Поверка основывается на оценке правильности полярности клемм катушек по нормам, также определяют погрешность с дальнейшей сверкой с паспортными данными.
Безопасность
Основные опасности при функционировании измерительных трансформаторов обусловлены качеством намотки катушек. Необходимо учитывать, что под витками действует основа из металла, которая в открытом виде создает опасность и угрозу для обслуживающего персонала.
Поэтому создается график обслуживания, по которому проводится периодическая проверка устройства. Персонал обязан следить за состоянием обмоток катушек. Перед проведением проверки трансформатор отключается и подключаются шунтирующие закоротки и заземление обмотки.
Устройство и принцип работы трансформатора тока
Трансформатор тока представляет собой измерительное устройство, первичная обмотка (высокая сторона) которого подключается к источнику переменного электрического тока, а его вторичная обмотка (низкая сторона) подключается к приборам измерения или к приборам защиты с малым сопротивлением.
Если точнее, то первичная обмотка любого трансформатора тока включается только последовательно в силовую электрическую цепь, по которой протекает электрическая нагрузка. К вторичной обмотке или нескольким вторичным обмоткам подключаются защитные приборы, измерительные приборы и приборы учёта электроэнергии.
Принцип действия трансформатора тока
Работа обычного трансформатора тока базируется на физическом явлении электромагнитной индукции. Это значит, что при подаче напряжения на первичную обмотку, в её витках будет проходить переменный ток, образующий впоследствии появление переменного магнитного потока. Появившийся магнитный поток проходит по сердечнику и пронизывает витки всех обмоток трансформатора, таким образом, индуцируя в них электродвижущие силы (э.д.с.). В случае закорачивания вторичной обмотки или же при включении нагрузки в её цепь, под воздействием э.д.с. в витках обмотки начнёт протекать вторичный ток.
Назначение трансформаторов
Общее назначение трансформаторов тока – преобразование (снижение) большой величины переменного тока до таких значений, которые будут удобны и безопасны для измерения.
Трансформаторы тока позволяют безопасно измерять большие электрические нагрузки в сетях переменного тока. Это становится возможным благодаря изолированию первичной обмотки и вторичной обмотки друг от друга.
При изготовлении к трансформаторам тока предъявляются строгие требования по качеству изоляции и по точности измерений электрических нагрузок.
Конструкция трансформатора тока
Трансформатор тока – это устройство, основой которого является сердечник, шихтованный из особой трансформаторной стали. На сердечник (магнитопровод) наматываются витки одной, двух или даже нескольких вторичных обмоток, электрически изолированных друг от друга, а также и от сердечника.
Что касается первичной обмотки, то она может представлять собой катушку, также намотанную на сердечник измерительного трансформатора. Однако чаще всего первичная обмотка представляет собой алюминиевую или медную шину (пластину). Не менее часто в трансформаторе тока вообще отсутствует первичная обмотка как таковая. В этом случае функцию первичной обмотки выполняет силовой проводник, проходящий через кольцо трансформатора тока. Это может быть отдельная жила электрического кабеля.
Вся конструкция трансформатора тока помещается в корпус для защиты от механических повреждений.
Коэффициент трансформации
Основной технической характеристикой каждого трансформатора тока является номинальный коэффициент трансформации. Его значение указывается на специальной табличке (шильдике) в виде отношения номинального значения первичного тока к номинальному значению вторичного тока.
Например, указанное значение 400/5 означает, что при первичной нагрузке в 400А, во вторичной цепи должен протекать ток в 5А и, следовательно, коэффициент трансформации будет равен 80. Если на шильдике указано значение 50/1, то коэффициент трансформации будет равен 50.
Практически у каждого трансформатора тока есть определённая погрешность. В зависимости от её величины каждому трансформатору тока присваивается свой класс точности.
Классификация трансформаторов
Существует несколько признаков, по которым трансформаторы тока делятся.
По своему назначению они бывают измерительными, защитными, а также промежуточными и лабораторными.
- Измерительные выполняют функцию измерения. К ним подключаются приборы, такие как амперметр или приборы учёта (счётчики электрической энергии).
- Защитные трансформаторы тока выполняют функцию электрической защиты совместно с устройствами защиты, поэтому к ним подключаются устройства, такие как реле тока или современные цифровые устройства высоковольтной защиты.
- Промежуточные трансформаторы тока применяют в токовых цепях релейной защиты.
- Лабораторные устройства обладают очень высокой степенью точности измерений. Также у них может быть несколько разных коэффициентов трансформации.
По виду установки трансформаторы тока бывают наружными и внутренними, а также встроенными внутрь электрооборудования (внутри высоковольтных выключателей, внутри питающих силовых трансформаторов и т.д.). Кроме того трансформаторы тока бывают накладными и переносными. Переносные трансформаторы используют для измерений токовой нагрузки в лабораторных условиях.
По исполнению первичной обмотки бывают одновитковые, многовитковые и шинные трансформаторы тока. По количеству ступеней трансформации – одно- и двухступенчатые.
По напряжению трансформаторы тока делятся на две группы – устройства с напряжением до 1000В и устройства с напряжением выше 1000В.
Кроме обычных измерительных трансформаторов тока, существуют и специальные, такие как трансформаторы тока нулевой последовательности.
Принцип действия ТТ и их назначение
В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.
Назначение трансформаторов тока: преобразование тока и разделение цепей
Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.
- Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
- Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.
Из чего состоит ТТ, принцип его работы
Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.
Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.
Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.
В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.
Коэффициент трансформации идеального ТТ
В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.
Коэффициент трансформации реального ТТ
В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:
- создание магнитного потока в магнитопроводе
- нагрев и перемагничивание магнитопровода
- нагрев проводов вторичной обмотки и цепи
К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам
В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.
Режимы работы трансформаторов тока
У ТТ существуют два основных режима работы – установившийся и переходный.
В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.
Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.
ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.
Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора
Существуют отличия в работе ТТ и ТН.
- Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
- ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
- Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.
Сохраните в закладки или поделитесь с друзьями