Kontakt-bak.ru

Контракт Бак ЛТД
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Трансформатор тока это

Статьи

Трансформатор тока, их применение и правильное подключение 18.06.2014 01:56

Назначение и применение

Трансформаторы – электротехнические устройства, широко применяемые как в производственной, так и в бытовой сфере. При этом различают категории трансформаторов напряжения и трансформаторов тока.

Установка трансформатора тока осуществляется с целью преобразования значений переменного тока с высоких на первичной обмотке до малых на вторичной, что обеспечивает удобство и безопасность эксплуатации. Их используют при подключении приборов учета расхода электроэнергии (электросчетчиков) и других электроизмерительных приборов, а также устройств, обеспечивающих релейную защиту различных систем электроэнергетики.

Устройство и правильное подключение

Важнейшими конструкционными элементами трансформатора являются первичная и вторичная обмотки, а также магнитопровод, заключенные в единый корпус. При этом первичная обмотка выполняется обычно в один виток (обмотка более точных устройств имеет два витка), или представляет собой проходящую сквозь специальное окно силовую шину (трансформатор шинного исполнения).

Первичная обмотка подключается к источнику тока, вторичная – непосредственно к измерительным приборам и другим потребителям, характеризуемым малым значениям внутреннего сопротивления.

С целью предотвратить неверное подключение и, как следствие, последующую неисправность трансформатора тока либо подключаемых устройств, выводы трансформаторов маркируются буквенными и цифровыми обозначениями, как это показано на нижеприведенной схеме. Начало и конец первичной обмотки обозначают как Л1 и Л2 (линия), а начало и конец вторичной обмотки — как И1 и И2 (измерение). Обмотку напряжения необходимо подключать к проводам «фаза» и «ноль». С этой целью между выводами Л1 и И1 устанавливают специальную перемычку, а нулевой провод подсоединяют к третьему зажиму.

Трансформатора тока (общая схема)

В высоковольтных трансформаторах тока напряжением 6-10 кВ и более устанавливается несколько групп вторичных обмоток, к одной из которых подключают устройство защиты, а к прочим, более точным, – приборы учета или измерения.

Вторичные обмотки трансформаторов тока при установке в три фазы соединяют по методу «Звезды» (рис.1), при двухфазной установке – по схеме «Неполной звезды» (рис.2).

Чаще всего используются трансформаторы с номинальными значениями первичного тока от 50 до 2000 А. Показатель вторичного тока в большинстве случаев составляет 5А.

Меры профилактики

Правильное подключение трансформатора тока – залог нормальной работы оборудования.

Электромонтаж цепей тока и напряжения должен производиться сообразно Правилам Устройства Электроустановок. Согласно нормативным документам, сечение медного провода в токовых цепях должно быть не менее 2,5 кв. мм, в цепях напряжения — не менее 1,5 кв.мм.

Вторичные цепи трансформаторов тока должны в обязательном порядке быть заземлены. Это обеспечивает как сохранность самих приборов, так и безопасность людей.

Особенности эксплуатации

Каждый из трансформаторов тока должен обязательно подвергаться периодическим поверкам госповерителя и иметь на корпусе пломбу с соответствующим клеймом, а также отметку в техническом паспорте. Необходимо помнить об этом при установке нового трансформатора, следя за тем, чтобы на момент монтажа дата последующей госповерки не была просрочена. Поверка должна производиться регулярно, с интервалом в четыре-пять лет, в зависимости от марки трансформатора и его типа.

Принадлежность трансформатора к определенному классу предопределяет применение методики и установочного инструментария. Вместе с тем первичная установка или замена трансформатора тока регламентированы обязательными условиями работ, которые предусматривают соблюдение той или иной схемы подключения. Такие схемы могут различаться в зависимости от требований организации, на которую производителем и поставщиком возложены вопросы компетенции в сфере генерации и доставки электроэнергии потребителям. В частности, ряд определенных различий имеют схемы подключения от Ленэнерго и Сбытовой компании.

Петербургская сбытовая компания

Самый простой и одновременно наиболее надежный вариант установки трансформатора в бытовых условиях — вызов электрика на дом. Это позволит, не нарушая нормативные требования, квалифицированно и в точном соответствии со всеми предписаниями выполнить весь комплекс монтажных и электротехнических работ.

Компания ЭлектроТехников предлагает Вам любые электромонтажные работы начиная с установки осветительных систем и заканчивая работами по автоматизации технических процессов:

Замена эл. счетчика

Ремонт проводки ( замена проводки )

Установка эл. щита ( установка распределительного щита )

Установка розеток ( перенос розеток )

Проводка в квартирах ( проводка в коттеджах )

Трансформатор тока это

Трансформатор тока

Следуя тому же принципу, что был рассмотрен в предыдущей статье, мы сможем использовать трансформатор для понижения тока, проходящего через линию электропередач. Это позволит нам легко безопасно измерять высокие токи системы при помощи недорогих амперметров. Трансформатор в данном случае должен быть последовательно соединен с линией электропередачи, как показано на рисунке ниже.

«Трансформатор тока» понижает ток до значения, применимого к обычному амперметру.

Обратите внимание, что в отличии от понижающего трансформатора напряжения, трансформатор тока (или ТT) является повышающим устройством (относительно напряжения). Это необходимо для понижения тока линии электропередач. Довольно часто трансформаторы тока представляют собой торроидальные трансформаторы, через которые проходит провод линии электропередач. Сама линия электропередач в данном случае выступает как первичная обмотка с одним витком:

Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены. Промышленный стандарт тока вторичной обмотки для трансформаторов тока находится в диапазоне от 0 до 5 А. Как и трансформаторы напряжения, трансформаторы тока могут изготавливаться с индивидуальными соотношениями обмоток, подходящими практически для любого применения. Поскольку их вторичный ток «при полной нагрузке» составляет 5 А, коэффициенты трансформации трансформаторов тока описываются как соотношение первичного тока к полной нагрузке 5 А, например:

Торроидальный трансформатор тока, показанный на фотографии выше, имеет коэффициент 50 : 5. То есть, когда в проводнике, проходящем через центр тора, протекает переменный ток 50 А, в обмотке трансформатора тока будет протекать ток величиной 5 А.

Поскольку трансформаторы тока — это повышающие трансформаторы предназначенные в основном для подключения амперметров, представляющих собой нагрузку с низким импедансом, они никогда не должны эксплуатироваться с ненагруженной вторичной обмоткой. Несоблюдение этого правила приведет к тому, что трансформатор тока будет создавать очень высокие вторичные напряжения, опасные как для оборудования, так и для персонала. Для облегчения технического обслуживания амперметров, параллельно вторичной обмотке трансформатора тока устанавливают переключатели, которые замыкают ее при каждом снятии измерительного прибора:

Замкнутый переключатель позволяет отключить амперметр от активной цепи трансформатора тока.

Преднамеренное короткое замыкание компонента энергосистемы может показаться очень странным, но оно совершенно правильно и совершенно необходимо при работе с трансформаторами тока.

Устройство и принцип работы трансформатора тока

Трансформатор тока представляет собой измерительное устройство, первичная обмотка (высокая сторона) которого подключается к источнику переменного электрического тока, а его вторичная обмотка (низкая сторона) подключается к приборам измерения или к приборам защиты с малым сопротивлением.

Если точнее, то первичная обмотка любого трансформатора тока включается только последовательно в силовую электрическую цепь, по которой протекает электрическая нагрузка. К вторичной обмотке или нескольким вторичным обмоткам подключаются защитные приборы, измерительные приборы и приборы учёта электроэнергии.

Принцип действия трансформатора тока

Работа обычного трансформатора тока базируется на физическом явлении электромагнитной индукции. Это значит, что при подаче напряжения на первичную обмотку, в её витках будет проходить переменный ток, образующий впоследствии появление переменного магнитного потока. Появившийся магнитный поток проходит по сердечнику и пронизывает витки всех обмоток трансформатора, таким образом, индуцируя в них электродвижущие силы (э.д.с.). В случае закорачивания вторичной обмотки или же при включении нагрузки в её цепь, под воздействием э.д.с. в витках обмотки начнёт протекать вторичный ток.

Назначение трансформаторов

Общее назначение трансформаторов тока – преобразование (снижение) большой величины переменного тока до таких значений, которые будут удобны и безопасны для измерения.

Трансформаторы тока позволяют безопасно измерять большие электрические нагрузки в сетях переменного тока. Это становится возможным благодаря изолированию первичной обмотки и вторичной обмотки друг от друга.

При изготовлении к трансформаторам тока предъявляются строгие требования по качеству изоляции и по точности измерений электрических нагрузок.

Конструкция трансформатора тока

Трансформатор тока – это устройство, основой которого является сердечник, шихтованный из особой трансформаторной стали. На сердечник (магнитопровод) наматываются витки одной, двух или даже нескольких вторичных обмоток, электрически изолированных друг от друга, а также и от сердечника.

Что касается первичной обмотки, то она может представлять собой катушку, также намотанную на сердечник измерительного трансформатора. Однако чаще всего первичная обмотка представляет собой алюминиевую или медную шину (пластину). Не менее часто в трансформаторе тока вообще отсутствует первичная обмотка как таковая. В этом случае функцию первичной обмотки выполняет силовой проводник, проходящий через кольцо трансформатора тока. Это может быть отдельная жила электрического кабеля.

Читать еще:  Устройства защиты от импульсных перенапряжений

Вся конструкция трансформатора тока помещается в корпус для защиты от механических повреждений.

Коэффициент трансформации

Основной технической характеристикой каждого трансформатора тока является номинальный коэффициент трансформации. Его значение указывается на специальной табличке (шильдике) в виде отношения номинального значения первичного тока к номинальному значению вторичного тока.

Например, указанное значение 400/5 означает, что при первичной нагрузке в 400А, во вторичной цепи должен протекать ток в 5А и, следовательно, коэффициент трансформации будет равен 80. Если на шильдике указано значение 50/1, то коэффициент трансформации будет равен 50.

Практически у каждого трансформатора тока есть определённая погрешность. В зависимости от её величины каждому трансформатору тока присваивается свой класс точности.

Классификация трансформаторов

Существует несколько признаков, по которым трансформаторы тока делятся.

По своему назначению они бывают измерительными, защитными, а также промежуточными и лабораторными.

  • Измерительные выполняют функцию измерения. К ним подключаются приборы, такие как амперметр или приборы учёта (счётчики электрической энергии).
  • Защитные трансформаторы тока выполняют функцию электрической защиты совместно с устройствами защиты, поэтому к ним подключаются устройства, такие как реле тока или современные цифровые устройства высоковольтной защиты.
  • Промежуточные трансформаторы тока применяют в токовых цепях релейной защиты.
  • Лабораторные устройства обладают очень высокой степенью точности измерений. Также у них может быть несколько разных коэффициентов трансформации.

По виду установки трансформаторы тока бывают наружными и внутренними, а также встроенными внутрь электрооборудования (внутри высоковольтных выключателей, внутри питающих силовых трансформаторов и т.д.). Кроме того трансформаторы тока бывают накладными и переносными. Переносные трансформаторы используют для измерений токовой нагрузки в лабораторных условиях.

По исполнению первичной обмотки бывают одновитковые, многовитковые и шинные трансформаторы тока. По количеству ступеней трансформации – одно- и двухступенчатые.

По напряжению трансформаторы тока делятся на две группы – устройства с напряжением до 1000В и устройства с напряжением выше 1000В.

Кроме обычных измерительных трансформаторов тока, существуют и специальные, такие как трансформаторы тока нулевой последовательности.

Трансформаторы тока. Виды и устройство. Назначение и работа

В системе обеспечения электрической энергией трансформаторы выполняют различные функции. Конструкции классического вида применяются для изменения определенных свойств тока до значений, наиболее подходящих для осуществления измерений. Существуют и другие виды трансформаторов, которые выполняют задачи по корректировке свойств напряжения до значений, подходящих наилучшим образом для последующего распределения и передачи электроэнергии. Трансформаторы тока согласно своему назначению имеют особенности конструкции, и перечень основных и вспомогательных функций.

Назначение

Основной задачей такого трансформатора является преобразование тока. Он корректирует свойства тока с помощью первичной обмотки, подключенной в цепь по последовательной схеме. Вторичная обмотка измеряет измененный ток. Для такой задачи установлены реле, измерительные приборы, защита, регуляторы.

По сути дела, трансформаторы тока – это измерительные трансформаторы, которые не только измеряют, но и осуществляют учет с помощью приборов. Запись и сохранение рабочих параметров тока нужно для рационального применения электроэнергии при ее транспортировке. Это одна из функций трансформатора тока. Модели конструкций бывают преобразующего типа и силовые варианты исполнений.

Устройство

Обычно все варианты исполнений трансформаторов подобного вида снабжены магнитопроводами с вторичной обмоткой, которая при эксплуатации нагружена определенными значениями параметров сопротивления. Выполнение показателей нагрузки важно для дальнейшей точности измерений. Разомкнутая цепь обмотки не способна создавать компенсации потоков в сердечнике. Это дает возможность чрезмерному нагреву магнитопровода, и даже его сгоранию.

С другой стороны, магнитный поток, образуемый первичной обмоткой, имеет отличие в виде повышенных эксплуатационных характеристик, что также приводит к перегреву магнитопровода. Сердечник трансформатора тока изготавливают из нанокристаллических аморфных сплавов. Это вызвано тем, что трансформатор может работать с более широким интервалом эксплуатационных величин, которые зависят от класса точности.

Отличие от трансформатора напряжения

Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.

Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.

Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.

Виды
Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:
  • Сухие.
  • Тороидальные.
  • Высоковольтные (масляные, газовые).

У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.

Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.

Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.

Принцип работы и применение

При эксплуатации в цепях с большим током появляется необходимость использовать небольшие устройства, которые бы помогали контролировать нужные параметры тока бесконтактным методом. Для таких задач широко применяются токовые трансформаторы. Они измеряют ток, а также выполняют много вспомогательных функций.

Такие трансформаторы производятся в значительном количестве и имеют разные формы и модели исполнения. Отличительными параметрами этих устройств является интервал измерения, класс защиты устройства и его конструкция.

В настоящее время новые трансформаторы тока работают по простому методу, который был известен в то время, когда появилось электричество. При действии с нагрузкой в проводе образуется электромагнитное поле, улавливающееся чувствительным прибором (трансформатором тока). Чем сильнее это поле, тем больший ток проходит в проводе. Нужно только рассчитать коэффициент усиления прибора и передать сигнал в управляющую цепь, либо в цепь контроля.

Трансформаторы выполняют функцию рамки на силовом проводе и реагируют на значение сети питания. Современные измерительные трансформаторы выполнены из большого числа витков, имеют хороший коэффициент трансформации. Во время настройки устройства определяют вольтамперные свойства для расчета точки перегиба кривой. Это нужно для выяснения участка графика с интервалом устойчивости функции трансформатора, который также имеет свой коэффициент усиления.

Кроме задач измерения, измеритель дает возможность разделить цепи управления и силовые цепи, что является важным с точки зрения безопасности. Применяя современные трансформаторы тока, получают сигнал небольшой мощности, не опасный для человека и удобный в работе.

В качестве нагрузки такого устройства может быть любой прибор измерения, который может работать с ним. При большом расстоянии оказывает влияние внутреннее сопротивление линии. В этом случае прибор калибруют. Также, сигнал можно передавать в цепь защиты и управления на основе электронных приборов.

С помощью них производят аварийное отключение линий. Приборы производят контроль сети, определяют нужные параметры. При проектировании встает задача по подбору прибора для измерения и контроля. Трансформаторы выбирают по средним параметрам сети и конструкции прибора измерения. Чаще всего мощные установки комплектуются своими измерительными устройствами.

На современном производстве широко применяются измерительные трансформаторы. Также они нашли применение и в обыденной жизни. Чувствительные приборы осуществляют защиту дорогостоящего оборудования, создают безопасные условия для человека. Они работают в электроцепях, создавая контроль над эксплуатационными параметрами.

Коэффициент трансформации

Этот коэффициент служит для оценки эффективности функционирования трансформатора. Его значение по номиналу дается в инструкции к прибору. Коэффициент означает отношение тока в первичной обмотке к току вторичной обмотки. Это значение может сильно меняться от числа секций и витков.

Нужно учитывать, что этот показатель не всегда совпадает с фактической величиной. Есть отклонение, определяемое условиями работы прибора. Назначение и метод работы определяют значения погрешности. Но этот фактор также не может быть причиной отказа от контроля коэффициента трансформации. Имея значение погрешности, оператор сглаживает ее аппаратурой специального назначения.

Установка

Простые трансформаторы тока, работающие на шинах, устанавливаются очень просто, и не требуют инструмента или техники. Прибор ставится одним мастером при помощи крепежных зажимов. Стационарные требуют оборудования фундамента, монтажа несущих стоек. Каркас крепится сваркой. К этому каркасу монтируется аппаратура. Комплект оснащения зависит назначение устройства и его особенности.

Читать еще:  Устройство защитного отключения (Часть 2)
Подключение

Чтобы облегчить процесс соединения проводов с устройством, изготовители маркируют комплектующие детали цифровым и буквенным обозначением. С помощью такой маркировки операторы, которые обслуживают устройство, могут легко сделать соединение элементов.

Способ подключения взаимосвязан с устройством, принципом работы и назначением прибора. Также оказывает влияние и схема обслуживаемой сети. Трехфазные линии с нейтралью предполагают установку прибора только на двух фазах. Эта особенность вызвана тем, что электрические сети на напряжение 6-35 киловольт не оснащены нулевым проводом.

Контроль

Это мероприятие состоит из разных операций: визуальный осмотр, дается оценка всей конструкции, проверяется маркировка, паспортные данные и т.д. Далее, осуществляется размагничивание трансформатора с помощью медленного повышения тока на первичной обмотке. Далее, величину тока уменьшают.

Затем готовят главные мероприятия по измерению параметров. Поверка основывается на оценке правильности полярности клемм катушек по нормам, также определяют погрешность с дальнейшей сверкой с паспортными данными.

Безопасность

Основные опасности при функционировании измерительных трансформаторов обусловлены качеством намотки катушек. Необходимо учитывать, что под витками действует основа из металла, которая в открытом виде создает опасность и угрозу для обслуживающего персонала.

Поэтому создается график обслуживания, по которому проводится периодическая проверка устройства. Персонал обязан следить за состоянием обмоток катушек. Перед проведением проверки трансформатор отключается и подключаются шунтирующие закоротки и заземление обмотки.

Трансформатор тока: назначение, основные понятия

Трансформатор тока – электромагнитный аппарат, который предназначен для понижения первичного тока до стандартного значения один или пять ампер, приемлемого для подключения измерительных приборов, токовых цепей счетчиков электрической энергии и устройств релейной защиты и автоматики.

В электроустановках всех классов напряжения существует общепринятое диспетчерское наименование трансформатора тока – ТТ-0,4кВ, ТТ-10кВ, ТТ-35кВ и т. п.

Первичная обмотка ТТ подключается в разрыв фазы, то есть по первичной обмотке течет ток нагрузки фазы. Существуют также трансформаторы тока проходного типа, которые одеваются на кабель или шину.

Для того, чтобы подключить ТТ, необходимо убедиться в том, что он соответствует параметрам электрической сети. Номинальное напряжение устанавливаемого ТТ должно соответствовать рабочему напряжению сети. Существует такое понятие как коэффициент трансформации, являющий собой отношение номинального первичного тока ко вторичному:

Как правило, в паспорте трансформатора тока указывается коэффициент трансформации дробью, где числитель – номинальный первичный ток, знаменатель – вторичный ток. Приведем пример: 400/5, то есть номинальные значения тока первичной обмотки — 400 А, вторичной обмотки – 5 А. Следовательно, при выборе трансформатора тока необходимо учесть максимальный ток нагрузки линии. То есть для присоединения с максимально возможной нагрузкой В 480 А, ТТ с коэффициентом трансформации 400/5 не подходит. В этом случае подходящим вариантом будет установка аппарата с KTT=600/5.

Меры безопасности при обслуживании трансформатора тока

Режим работы трансформатора тока близкий к режиму короткого замыкания. При размыкании вторичной обмотки аппарата происходит исчезновение размагничивающего тока, вследствие этого на выводах вторичной обмотки возникает ток первичной обмотки, что в конечном счете приводит к повреждению ТТ. Кроме того, в результате возникновения большого магнитного потока, во вторичной обмотке ТТ наводится электродвижущая сила величиной в несколько десятков киловольт, что влечет за собой повреждение изоляции вторичных цепей, устройств релейной защиты, автоматики, измерительных приборов, а также представляет опасность обслуживающему персоналу электроустановки.

Следовательно, категорически запрещается размыкать выводы вторичной обмотки трансформатора тока, они должны быть всегда подключены к токовым цепям устройств РЗиА, измерительных приборов или счетчиков электрической энергии. При возникновении необходимости замены измерительного прибора или токового реле, следует предварительно зашунтировать выводы вторичной обмотки. Если установка шунтирующей перемычки на работающем ТТ невозможна, то для замены прибора следует обесточить аппарат выводом присоединения в ремонт.

Трансформатор тока: принцип работы и использование

Работа трансформатора тока (ТТ) основана на законе электромагнитной индукции, действующим в электрических и магнитных полях, изменяющихся по форме гармоник переменных синусоидальных величин.

ТТ применяются для измерения тока в приборах электроэнергетических систем. Они обеспечивают безопасность процедуры, так как позволяют изолировать первичную цепь с высоким напряжением от измерительной цепи. Кроме этого, трансформаторы позволяют выполнить моделирование определенных процессов и обеспечивают защиту электроустановок.

Принцип работы

Действие устройств базируется на явлении электромагнитной индукции. При подаче напряжения в ТТ через витки первой обмотки проходит переменный ток, который в дальнейшем формирует переменный магнитный поток. В результате большие величины преобразуются в те значения, которые безопасны и удобны для измерения.

Первичная обмотка запускается медленно и последовательно, чаще все она представляет собой алюминиевую или медную пластину, реже используются катушки. Для замыкания на нагрузку используется вторичная обмотка, в которой создается ток, его величина пропорциональна потоку в первом элементе.

Полученный ток проходит по сердечнику и перераспределяется во все обмотки, продуцируя в них электродвижущие силы. При включении в цепь последующих обмоток в их витках также образовывается вторичный ток.

Конструкция ТТ

Данные изделия можно встретить как в небольших электронных приборах, так и в значительных по объему энергетических установках. Различия между ними заключаются лишь в габаритах.

Конструктивно трансформаторы состоят из двух элементов:

  • замкнутый магнитопровод (сердечник);
  • 2 и более обмотки (первичная и вторичные).

Все детали помещаются в специальный корпус, который служит как защита от механических повреждений.

Основные характеристики

Одним из важнейших параметров ТТ является номинальное напряжение, то есть максимальные значения напряжения, при которых устройство может корректно работать. Этот показатель указывается в паспорте трансформатора, средняя цифра составляет от 0,66 до 750 кВ.

К числу основных параметров ТТ относят и коэффициент трансформации. Он определяется как отношение первичного тока к вторичному.

Другая важная характеристика систем – номинальный ток первичной сети (протекающий по первичной обмотке). Значение может составлять от 1 А до 40 тысяч А. Показатели вторичного тока всегда равняются 1 А или 5 А, по заказу изготавливаются модели с 2 А и 2,5 А.

Еще два важных параметра устройств – это электродинамическая и термическая стойкость. Первая – характеризует максимальную амплитуду тока короткого замыкания. Если сказать проще, то это способность трансформатора противостоять разрушающему воздействию короткого замыкания.

Термическая стойкость – это максимальный показатель для короткого замыкания, которое система может выдержать за определенный промежуток времени и не пострадать от высоких температур.

Виды трансформаторов тока по назначению

Выделяют следующие разновидности:

  • Измерительные. Подобные устройства служат для передачи токов на специальные приборы измерения. Используются, если прямое подключение измерителей невозможно или небезопасно. ТТ рассчитываются таким образом, чтобы минимально влиять на первичную цепь и минимизировать любые искажения силы тока.
  • Промежуточные. Применяются в целях релейной защиты, обеспечивают изоляцию тока в первичной и вторичной обмотке.
  • Лабораторные. Отличаются повышенной точностью, предназначаются для моделирования определенной силы тока.
  • Защитные. Подключаются к токовым цепям защиты. Нередко номинальный ток таких систем существенно отличается от тока сети. Производители присваивают защитным устройствам определенный класс точности, что позволяет использовать их в качестве измерительных.

Классификация по способу исполнения

Отдельно стоит рассматривать способ исполнения ТТ, так как в этом случае также существует несколько вариантов. Выделяют следующие виды:

  • Тороидальные. Устанавливаются на кабели или шины, поэтому первичная обмотка им вообще не нужна. Первичный ток в этом случае протекает по шине, проходит через сердечник и фиксируется вторичной обмоткой.
  • Сухие. У таких изделий первичная обмотка не имеет изоляции, поэтому свойства получаемого тока зависят от используемого коэффициента преобразования.
  • Высоковольтные (масляные и газовые). Используются для дополнительной защиты от короткого замыкания, а для измерительных работ – не годятся.

Варианты установки трансформаторов

Помимо назначения и способа исполнения, трансформатор тока можно разделить на несколько видов в зависимости от способа монтажа. Выделяют следующие устройства:

  • Переносные. Мобильные модели, которые служат для диагностических и лабораторных испытаний.
  • Накладные. Применяются для установки сверху на проходные изоляторы, отличаются компактностью и имеют специальные крепления для монтажа.
  • Встраиваемые. Такие изделия встроены в электрические машины или коммутационные аппараты (например, в генераторы или похожие устройства).

Дополнительно выделяют трансформаторы для наружной установки (нужны для ОРУ – открытых распределительных устройств) и внутреннего монтажа (для ЗРУ – закрытых распределительных устройств).

Независимо от типа и способа монтажа, все устройства, кроме встроенных, имеют специальную контактную площадку. С ее помощью подсоединяется заземляющий проводник и зажим, что, в конечном счете, максимально упрощает процесс установки.

Принцип действия ТТ и их назначение

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и ТН.

  • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
  • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
  • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Сохраните в закладки или поделитесь с друзьями

Трансформатор тока — что это? Характеристики трансформатора тока

Трансформатор тока состоит из двух цепей, первичной и вторичной, соединенных магнитопроводом.

Если первичная цепь образована несколькими витками, то это прибор обмоточного типа. Если первичная цепь представляет собой простой провод, проходящий через датчик, то это прибор шинного типа (интегральная схема, образованная медной шиной) или проходной трансформатор (первичная цепь образована проводом, не изолированным от электроустановки) либо тор (первичная цепь образована изолированным кабелем).

Характеристики трансформатора тока

Установленный уровень изоляции трансформатора тока ТТ

Это наибольшее напряжение, которое выдерживает первичная цепь трансформатора тока. Напомним, что первичная цепь подключается к высокому напряжению, а вторичная цепь, как правило, одним из выводов подсоединяется к земле.

Как для любого электротехнического оборудования устанавливаются также следующие параметры:

— максимальное одноминутное испытательное напряжение промышленной частоты;

— максимальное импульсное испытательное напряжение.

Пример: при номинальном напряжении 24 кВ трансформатор тока должен выдерживать в течение 1 минуты при частоте 50 Гц напряжение 50 кВ и импульсное напряжение 125 кВ.

Установленный коэффициент трансформации

Данный параметр представлен в виде соотношения первичного и вторичного токов Ip/Is. Значение вторичного тока устанавливается, как правило, равным 5 или 1 А.

Основными характеристиками трансформатора тока являются также и другие:

Точность

Данная характеристика обусловлена «сводной» погрешностью по номинальному предельному току. Предельный коэффициент точности (FLP) — это соотношение номинального предельного тока и установленного значения тока.

5Р10 означает погрешность 5% при 10 In, а 10Р15 составляет погрешность 10% при 15 In, где: 5Р и 10Р — нормализованные классы точности трансформаторов тока для защиты; 5 In, 10 In, 15 In, 20 In — нормализованные значения предельного номинального тока.

— Класс PR определяется коэффициентом остаточной намагниченности, отношением остаточного потока к потоку насыщения, и это значение должно быть меньше 10%.

5РR и 10РR — нормализованные классы точности трансформаторов тока для защиты.

— Класс РХ соответствует другому методу определения характеристик трансформатора тока — по «напряжению точки перегиба», сопротивлению вторичной цепи, намагничивающему току (см. рис. 1 на стр. 20).

Номинальная мощность

Полная мощность в ВА, подаваемая трансформатором тока во вторичную цепь при гарантированной точности определения вторичного тока.

Мощность потребляется всеми подключенными приборами, а также соединительными проводами. Если нагрузка трансформатора тока меньше номинальной, то фактическая точность трансформатора будет больше установленной точности, и, соответственно, перегруженный трансформатор тока теряет в точности.

Кратковременный допустимый ток

Выраженный действующим значением в кА, максимальный допустимый ток (Ith) за 1 секунду (при короткозамкнутой вторичной цепи) представляет термическую устойчивость трансформатора тока к токам перегрузки. Трансформатор тока должен выдерживать ток короткого замыкания в течение времени, необходимого для устранения повреждения. Если время устранения повреждения больше или меньше 1 с, ток, который выдерживает трансформатор тока, рассчитывается по формуле:

Электродинамическая устойчивость, выраженная пиковым значением в кА, составляет не менее 2,5 • Ith

Нормализованные значения определяемого первичного тока (в А) следующие: 10 — 12,5 — 15 — 20 — 25 — 30 — 40 — 50 — 60 — 75 и их кратные или десятые доли.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector