Роль и назначение нулевого провода

Содержание

Нулевой провод в трехфазной сети

Роль и назначение нулевого провода

Если кто-либо сталкивался с электричеством, то непременно слышал о таких понятиях, как фазный и нулевой провод. Их основной отличительной чертой является назначение. Провод, соединяющий нулевую точку фаз генератора, трансформатора с нулевой точкой нагрузки, называют нулевым или нейтральным. Его называют так потому, что в некоторых случаях ток в нем равен нулю, и нейтральным исходя из того, что он одинаково принадлежит любой из фаз.

  • Различия фазного и нулевого провода
  • Особенности нейтрального провода
  • Классификация нейтралей линий электропередач
  • Реакция электроприборов на обрыв нуля

Различия фазного и нулевого провода

Фазный провод (фаза) предназначен для подачи электричества к потребителю.

Назначение нулевого провода (нейтрального или нуля) состоит в выравнивании асимметрии напряжений при разном значении нагрузки в фазах.

Он присоединён к нулевым точкам источника и потребителя при их соединении в «звезду».

Присоединение нейтрального провода (трехфазная четырехпроводная сеть) является возможным только в том случае, когда источник и нагрузка соединены в «звезду».

При соединении в «треугольник» необходимость в нём отпадает, так как линейное и фазное напряжения в фазах одинаковы.

Чтобы понять разницу между линейным и фазным напряжением, необходимо понимать, что в трехфазной трехпроводной цепи линейное (напряжение между двумя фазными проводами) в основном составляет 380 В, а фазное — напряжение между фазой и нулем — в √3 раз меньше приблизительно 220 В.

Нейтральный провод заслужил свое название тем, что при работе устройств ток в нём, при одинаковой нагрузке трёх фаз, равен нулю. Сопротивление его невелико. Поэтому при перегрузке одной или нескольких фаз, ток в нем быстро возрастет. В схеме освещения его наличие является обязательным условием. В ином случае не гарантируется равномерность освещения.

В зависимости от роли, нулевой провод может быть рабочим, защитным, совмещенным.

Рабочий обозначается латинской буквой N и выполняется голубым цветом в европейских странах. В некоторых других странах цвет может быть серым либо белым.

Защитный обозначается РЕ. Он предназначен для безопасности в случае попадания потенциала на корпус электроприбора. В нормальном режиме он обесточен, а при поломке является проводником, который отведет от электроприбора опасный потенциал в землю. Цвет этой жилы желто-зеленый.

В некоторых системах нулевой провод совмещен с защитным. В таком случае маркировка будет обозначена как PEN и окраска этой жилы будет синей с полосками на концах желто-зеленого цвета.

Особенности нейтрального провода

Нулевой провод предотвращает нежелательные ситуации при аварийных режимах работы. Без его наличия в случае фазного короткого замыкания двух фаз напряжение в третьей фазе мгновенно возрастет в √3 раз. Это губительно скажется на оборудовании, которое питает этот источник. В случае наличия нуля в такой ситуации, напряжение не изменится.

При обрыве одной из фаз в трехфазной трехпроводной системе (без нуля), напряжение на двух оставшихся фазах уменьшится. Они окажутся соединенными последовательно, а при этом виде соединения напряжение распределяется между потребителями в зависимости от их сопротивления.

При обрыве одной из фаз в трехфазной четырёхпроводной системе, напряжение в двух оставшихся фазах своего значения не изменит.

Предохранители в нулевой провод не устанавливают из-за его большой значимости, потому как его обрыв является нежелательным

Так как большую часть времени работы электроустановок ток в этом проводе либо равен нулю, либо незначителен, нет смысла изготавливать его такого же сечения, как и сечение фазных. Чаще всего, из соображений экономии, он имеет меньшее сечение жилы, нежели сечение жил фаз в одной электроустановке. Если защитный провод не совмещен с нулевым, его сечение выполняют вдвое меньше, нежели, у фазного провода.

Классификация нейтралей линий электропередач

Назначение линий электропередач весьма разнообразно. А также разнообразна аппаратура для их защиты от утечек и коротких замыканий. В связи с этим нейтрали классифицируются на три вида:

  • глухозаземленная;
  • изолированная;
  • эффективно заземлённая.

Если линия электропередач напряжением от 0,38 кВ до 35 кВ имеет небольшую длину, а количество подключенных потребителей велико, то применяется глухозаземленная нейтраль. Потребители трехфазной нагрузки получают питание, благодаря трем фазам и нулю, а однофазной — одной из фаз и нулю.

При средней протяженности линий электропередач напряжением от 2 кВ до 35 кВ и небольшим количеством потребителей, подключенных к данной линии, находят применение изолированные нейтрали. Они широко используются для подключений трансформаторных подстанций в населённых пунктах, а также мощного электрооборудования в промышленности.

В сетях, с напряжением 110 кВ и выше, с большой протяженностью линий электропередач, применяется эффективно заземлённая нейтраль.

Реакция электроприборов на обрыв нуля

Если общий нейтральный провод в многоэтажном доме оборвется, то потребители ощутят это в результате скачка напряжения в их электроприборах.

Основные факторы, которые могут привести к обесточиванию общего нуля:

  • аварийная ситуация на подстанции;
  • устаревшая проводка;
  • монтаж проводки выполнялся не совсем качественно.

Та фаза, к которой подключено большее количество потребителей многоквартирного дома, будет перегружена. Напряжение в ней уменьшится. В той фазе, к которой потребителей подключено меньше всего, напряжение резко возрастет.

Это негативно скажется на приборах — снижение напряжения вызовет их неэффективную работу, а рост напряжения может повлечь за собой выход из строя тех, которые были подключены в данный момент. Чтобы обезопасить себя от такой ситуации, необходимо установить в щиток, питающий отдельную квартиру, индивидуальный ограничитель перенапряжения. Как только напряжение начнет превышать допустимые значения, ограничитель быстро отключит питание.

Если произойдет обрыв нуля непосредственно в квартире, то электричество пропадет полностью, но вместе с тем фаза не отключится. Опасность заключается в том, что она может перейти как раз на провод нулевой. И если какой-либо электроприбор был предварительно заземлён на него, корпус этого электроприбора будет под напряжением, а проще говоря, начнет «биться током».

Главными факторами, которые способствуют обрыву нуля непосредственно в квартире можно назвать:

  • ненадежность присоединения контактов;
  • неправильно выбранное сечение проводника;
  • устаревшая проводка.

Эти факторы приводят к чрезмерному нагреванию проводника. Из-за повышенной температуры окисляется место присоединения контактов, перегреваются жилы проводов. А это, в свою очередь, может привести к пожару.

Нулевой провод, фаза ноль.

В первую очередь нужно понять, что же такое фаза, и что ноль, и только после этого – как их найти.

В промышленных масштабах и в быту производится разный ток, это трехфазный переменный и однофазный, соответственно. Трехфазная сеть характерна тем, что переменный ток течет по трем проводам, а возвращается назад – по одному. А однофазная отличается тем, что наша квартирная проводка подключается только к одному из трехфазных проводов, схематически данный процесс изображен на рисунке 1.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

Важно понимать, что возникновение электрического тока возможно исключительно при наличии замкнутой электрической сети (рисунок 2). Состоит такая сеть из следующих элементов:

  • обмотка – Lт,
  • трансформатор подстанции – 1,
  • соединительная линия – 2,
  • электропроводка квартиры – 3.

В данной схеме фаза обозначена как L, ноль – N.

Чтобы в замкнутой сети протекал ток, важно обеспечить подключение к ней хотя бы одного потребителя энергии – Rн, иначе тока не будет, однако напряжение в фазе останется.

Обмотка Lт имеет два конца: один из них имеет контакт с грунтом, то есть, заземлен (Змл) и идет от этой точки заземления, он называется нулевым. Другой конец называется фазовым.

Как определить фазу и ноль.

Здесь можно сделать вывод, что напряжение между нулевым и фазовым (220 Вольт) значениями будет равно примерно нулю, этот факт определяется сопротивлением заземления.

Например, по каким-либо причинам может возникнуть ситуация контакта между фазой и металлическим корпусом электроприбора, который является токопроводящим, вследствие чего появится напряжение. Чтобы избежать в такой ситуации поражения электрическим током, необходимо устройство защитного отключения, которое может обеспечить защиту.

В случае, если человек коснется напряженного корпуса этого электроприбора, может возникнуть электрический ток, который будет протекать через тело, причиной тому, наличие электронного контакта между телом и «землей» (рисунок 4). Степень опасности, которая грозит при этом человеку, зависит от величины сопротивления этого контакта, на это могут влиять следующие факторы: например, влажный или металлический пол, контакт строительной конструкции с естественными заземлителями (батареи, водопроводные трубы) и другие. И, соответственно, чем меньше сопротивление контакта, тем больше опасность.

Читать еще:  Расшифровка обозначений на мультиметре, что означают кнопки и значки

В такой ситуации заземление корпуса станет решением проблемы (рисунок 5).

На практике этот способ защиты реализуется следующим образом: необходимо проложить отдельный заземляющий проводник РЕ, который затем заземлить тем или иным способом (рисунок 6).

Существуют различные способы заземления, каждый имеет свои достоинства и недостатки, однако это уже тема для отдельной статьи, не будем останавливать сейчас на этом свое внимание.

Сейчас перейдем к рассмотрению нескольких важных практических вопросов.

Как определить фазу и ноль.

При подключении любого электроприбора, возникает закономерный вопрос: где фаза и где ноль?

Для начала попробуем разобраться, как найти фазу. Самый простой способ, существующий на данный момент, это использовать индикаторную отвертку (рисунок 7). Она состоит из следующих элементов:

  • токопроводящее жало – 1,
  • индикатор – 2,
  • контактная площадка – 3.

Механизм использования такой отвертки довольно прост: токопроводящим жалом касаемся контролируемого участка электрической цепи, пальцем руки – контактной площадки, если индикатор светится, это свидетельствует о наличии фазы.

Еще один способ проверки фазы – использовать мультиметр, или его еще называют тестером. Однако, данный способ более трудоемкий. Мультиметр может работать в различных режимах, в нашем случае необходимо выбрать режим измерения переменного напряжения и установить предел более 220 Вольт. Берем один щуп мультиметра, какой – не имеет значения, и касаемся им участка измеряемой цепи, а другим щупом – естественного заземлителя, в роли которого может быть батарея отопления, либо металлические водопроводные трубы. Индикатором того, что на данном участке цепи присутствует фаза, будут показания мультиметра, соответствующие напряжению сети, то есть около 220 В (рисунок 8).

В случае, если вы провели измерения и они показали отсутствие фазы, утверждать что это ноль нельзя. Пример можно увидеть на рисунке 9:

  • a) На данный момент в точке 1 нет фазы,
  • b) При замыкании выключателя S фаза появляется.

Поэтому очень важно проверять се возможные варианты.Еще хочется отметить один момент: в случае, если в электропроводке имеется кабель заземления, методом электрических измерений отличить его от нулевого проводника невозможно. Обычно заземление выполняют с использованием провода желто-зеленого цвета, но и это не может дать полной гарантии. Поэтому, проще всего, посмотреть, какой провод подсоединен к заземляющим контактам под крышкой розетки.

Назначение нулевого провода в трехфазных системах

Одной из важнейших экономических проблем электроснабжения является уменьшение веса проводов электрической сети при заданной передаваемой мощности и определенном проценте потерь в сети. Оно может быть достигнуто не только повышением напряжения в сети, но также путем объединения нескольких независимых сетей, причем в части проводов можно создать токи, взаимно компенсирующие друг друга. Это дает возможность уменьшить либо число проводов, либо их сечение.

Уже в первые годы развития электротехники, когда электропередача производилась при постоянном напряжении, указанная идея была использована в так называемой трехпроводной системе, предложенной Доливо-Добровольским.

Пусть имеются два одинаковых (по напряжению и мощности) источника постоянного напряжения U , каждый из которых обслуживает своих потребителей.

Сеть состоит из четырех проводов. Если объединить два провода в так называемый уравнительный (нулевой) провод, то в нем будут суммироваться противоположно направленные токи, поэтому сечение провода можно будет значительно уменьшить.

При симметричной нагрузке ( I1=I2 ) уравнительный провод оказывается излишним, и экономия в проводах достигает 50°. При изменении нагрузок (без уравнительного провода) напряжение будет перераспределяться между ними, что нежелательно .

Уравнительный провод в значительной степени уменьшает несимметричное распределение напряжения. Если можно пренебречь внутренним сопротивлением источников и сопротивлением линии, то несимметрия устраняется практически полностью. Подобная же идея лежит в основе построения многофазных систем переменного тока.

Многофазной симметричной системой называется совокупность нескольких переменных напряжений равной амплитуды и частоты, симметрично сдвинутых по фазе со времени. Практическое распространение получила трехфазная система (смотрите — Трехфазная система ЭДС).

Трехфазная (и всякая многофазная) система по сравнению с однофазной имеет ряд преимуществ: она позволяет выиграть в весе проводов электрической сети, обеспечивает более равномерную нагрузку двигателя, вращающего электрический генератор трехфазного напряжения, и, наконец, позволяет создать вращающееся магнитное поле, широко применяющееся в электродвигателях.

Если бы вместо трехфазной системы применялась однофазная (той же мощности и того же напряжения), то потребовалось бы только два провода, но их сечение пришлось бы рассчитывать на втрое больший ток. По сравнению с однофазной системой трехфазная дает экономию в весе проводов на 30 — 40%.

Независимо от схемы включения генератора (обычно неизвестной потребителю) нагрузка трехфазной системы также может включаться двумя способами — треугольником или звездой.

В первом случае напряжение на каждом из потребителей равно линейному и не меняется при нарушении симметрии нагрузок. Ток в потребителе (фазовый) отличается от тока в линии.

При включении же потребителей звездой ток в каждой нагрузке равен соответствующему линейному току, но напряжение на каждой нагрузке (фазовое) отлично от линейного.

При изменениях нагрузок токи автоматически перераспределяются, причем сумма их (получающаяся в общей точке нагрузок) всегда обращается в нуль. Одновременно происходит соответственное перераспределение напряжений между неравными нагрузками.

Этот недостаток устраняется, если имеется нулевой провод (присоединяемый к общей точке нагрузок), так как он позволяет сумме трех фазовых токов оставаться отличной от нуля т. е. при несимметричной нагрузке нулевой провод трехфазной системы способствует поддержанию постоянства напряжения на нагрузках.

Отгорание нуля в трехфазной сети: современные проблемы электросетей

Причины отгорания нуля в трехфазной сети

Отгорание нуля в однофазной сети, то есть в пределах одного дома или квартиры не принесет вреда бытовой технике. В этом случае пропадёт напряжение сети 220 В, а фазный провод останется под потенциалом. В другом варианте, когда произойдёт отгорание нуля в трехфазной сети, может не выдержать бытовая техника повышенного напряжения.

Защита от отгорания нуля в квартире

При отгорании нуля в трехфазной сети, напряжение в квартире может достигнуть 380 В. Такого напряжения, не выдержит ни один бытовой прибор. Как известно к электрощиту на площадке вашего этажа подведен четырех жильный трехфазный кабель.

Три фазы, которого распределяются по квартирам равномерно, а нулевой провод (сечение его в 2 раза меньше фазного) является общим для всех квартир. Если отгорит ноль в вашей квартире, тогда просто пропадет напряжение. Но если отгорает общий ноль с кабеля на электрощите в подъезде, тогда вся ваша техника окажется под угрозой повышенного напряжения.

Повышенное напряжение приходит через какую-либо нагрузку (бойлер, электроплита, электрический чайник) от вашего соседа, имеющего другую фазу, чем ваша. Фаза соседа – включенный чайник – нулевой провод. То есть фаза через ваш нулевой провод окажется на вашем нуле. Это напряжение может достигнуть 380 В (в зависимости от нагрузки соседа).

Особенности нулевого провода трехфазной сети

В промышленности электросеть может собираться по схеме “треугольник” или “звезда”. Для нужд населения используется сеть по схеме “звезда” с нулевым проводником. Как известно три фазы трехфазной сети сдвинуты относительно друг друга на 120. В нулевом проводнике токи, сдвинутые на 120, взаимно компенсируются.

Схема соединений нагрузок звезда

При одинаковой нагрузке в каждой фазе, общий ток нулевого провода будет равен нулю. Это в идеале. В действительности нагрузка каждой фазы разные, ведь все потребители нагрузок в многоквартирном доме включаются не согласовано, в разное время и разной мощностью.

Поэтому токи в трехфазной сети в нулевом проводе будут отличаться от нуля. Но всё равно для сети 50 Гц ток в нулевом проводе будет ниже, чем токи в фазных проводах. Поэтому для трехфазных сетей 50 Гц сечение нулевого провода берется в 2 раза ниже фазного. Такие особенности сети можно отнести к прошедшим годам.

Перекос фаз в трехфазной сети, ток нулевого провода не равен нулю

Что же изменилось в современной электросети? С появлением техники на импульсных источниках питания, в сети кроме частоты 50 Гц стали присутствовать и высшие гармоники. Если раньше к сети подключалась только линейная нагрузка (тэны, двигатели, лампы накаливания), то сейчас еще добавились и нелинейные нагрузки с импульсным характером питания.

Все импульсные источники имеют диодные мосты с конденсаторами, которые периодически меняют свое сопротивление (включаясь и отключаясь), с частотой импульсного генератора. Таким образом, при работе импульсного источника появляются короткие импульсы в сети. Присутствие этих коротких импульсов вызывает ряд негативных последствий.

Перегрев нулевого провода

Появление коротких импульсов в сети с нелинейными нагрузками приводит к появлению больших токов нулевого провода в 1,5 раза превышающих фазные токи. Сечение же нулевого провода остается ниже фазного и отсутствует какая-либо защита нулевого проводника.

Всё это приводит к перегрузке нулевого провода и его перегреву. Вероятность отгорания нуля значительно увеличивается. Как следствие, под влиянием токов импульсного характера меняется форма синусоиды напряжения, она становится “плоской”.

Читать еще:  Что такое электрический ток

Работа электродвигателей и трансформаторов в сетях с искаженной формой синусоиды

Возникающие гармоники в сетях с нелинейной нагрузкой отрицательно действуют на работу трансформаторов, вызывая немалые потери. Увеличение потерь в трансформаторе сопутствует его перегреву, увеличению потребления электроэнергии и выходу его из строя.

Искаженная форма синусоиды сети

Перегрев трансформатора исключает возможность его использования на максимальной мощности, уменьшается время работы в несколько раз. Импульсные помехи в электросетях значительно уменьшают срок службы бытовых приборов из-за их перегрева и быстрого старения изоляции.

В электродвигателях импульсный характер сетей вызывает дополнительное подмагничивание стали, ее перегреву, преждевременному износу и ухудшению характеристик электродвигателя. Гармоники в сетях могут вызвать срабатывание автоматических выключателей из-за дополнительного нагрева его элементов.

Такие импульсные помехи возникают в случае близкого расположения питающих сетей сотовой связи. Иногда можно встретить подключение кабелей сотовой связи к электросетям жилых зданий. В результате страдают жильцы от частого отгорания нуля, выхода из строя бытовой техники и быстрого износа электропроводки.

Определить импульсный характер токов обычными токоизмерительными клещами не получится, так как они рассчитаны на сеть 50 Гц и токи гармоник не видят. Для этой цели можно использовать измерительные приборы имеющие функцию True RMS, которые рассчитаны на обширный частотный диапазон.

Как сделать защиту от отгорания нуля? Для защиты нужно установить реле напряжения в квартирный щиток, на нулевые проводники поставить автоматы. Лучшим решением для защиты своей сети от отгорания нуля и импульсных помех будет использование инверторного стабилизатора, который на выходе даст идеальную синусоиду с частотой 50 Гц с минимальными искажениями.

Почему греется нулевой провод?

Довольно распространенная проблема старой проводки – нагрев нулевых проводов в распределительном щитке. Если вы столкнулись с такой неприятностью необходимо срочно принимать меры, поскольку обрыв нуля представляет серьезную опасность, особенно в трехфазных цепях электрического тока. Из сегодняшней статьи Вы узнаете, почему греется нулевой провод и как устранить эту проблему.

Наиболее вероятные причины нагрева

На тематических форумах периодически возникают споры относительно причин, вызывающих нагрев жил с нулевым потенциалом при нормальном состоянии фазных проводов бытовой сети. Несмотря многочисленные дискуссии по данному вопросу, существует всего три фактора, способные вызвать рассматриваемое негативное воздействие:

  1. Низкая надежность электрического контакта.
  2. Влияние высших гармоник.
  3. Повышенная нагрузка на ноль.

Предлагаем детально рассмотреть каждую из перечисленных выше причин.

Низкая надежность электрического контакта

Указанная причина наиболее характерна для старых проводок из алюминиевых проводов. Недостатки этого материала неоднократно описывались в других публикациях на нашем сайте, но не будет лишним еще раз кратко перечислить их:

  • Образование оксидной пленки на проводе, что вызывает рост сопротивления контакта.
  • Пластичность материала требует регулярного подтягивания соединений.
  • Перегрев алюминиевого провода повышает его хрупкость.

Учитывая, что внимание чаще уделяется электрическим контактам фазных проводов, про нулевую шину часто забывают. В результате со временем увеличивается сопротивление контакта, он нагревается и рано или поздно отгорает. Ради справедливости следует заметить, что данная проблема может наблюдаться и у медных проводов. Пример плохого контакта с нулевой шиной в квартирном щитке продемонстрирован на фото.

Перегрев нулевых проводов из-за плохого контакта

Характерно, что приведенная проблема чаще всего проявляется именно в квартирных щитках, а не электроточках. Это объясняется тем, что на контактные соединения проводов с нулевой шиной приходится более значительная нагрузка, чем на отдельную розетку.

Влияние высших гармоник

С появлением в быту и офисах большого количества электрических приборов, оснащенных импульсными БП возникла проблема с перегревом и, как следствие, разрушением (отгоранием) провода рабочего нуля. Это происходит по причине перегрузки последнего токами высших гармоник. То есть, возникает ситуация, при которой на ноль приходится больший ток, чем на фазные проводники. При этом установка защитных устройств часто производится только на последние.

В старых системах в расчет принималась исключительно линейная нагрузка, в которой присутствует лишь основная гармоника (В Советском Союзе, а впоследствии и на постсоветском пространстве это 50,0 Гц). В соответствии с этим считалось, что нагрузка фазные провода будет всегда выше, чем на рабочий ноль. Из этого следовала невозможность перегрузки нуля больше фазы. Таким образом, защита фаз от перегрева обеспечивала и безопасность нуля.

С появлением большого числа электропотребителей, создающих нелинейные нагрузки, происходит повышение тока, идущего через рабочий ноль. Это может привести к отгоранию последнего в старых энергосистемах. Примеры бытовых электроприборов вызывающих нелинейность:

  • Микроволновые, индукционные, а также дуговые электропечи.
  • Светодиодные и газоразрядные источники света.
  • Все устройства с импульсными БП.
  • Инверторные электрические машины и т.д.

Чтобы не допустить обрыва нуля вследствие влияния высших гармоник, в некоторые нормативные документы были внесены изменения. В качестве примера можно привести ГОСТ 30804.4.30 2013, в котором предписывается при расчетах принимать во внимание гармоники, чей порядок от 40-го и выше. В ГОСТе 50571.5.52 2011 рекомендуется выбирать сечение кабеля в зависимости от самой нагруженной токоведущей жилы, при этом должна учитываться и токовая нагрузка рабочего нуля.

К сожалению, рамки текущей статьи не позволяют более полно раскрыть тему высших гармоник, но мы обязательно к ней вернемся в одной из последующих публикаций на нашем сайте.

Повышенная нагрузка на ноль

Иногда можно услышать, что перегрев провода нуля связан с повышенной нагрузкой из-за подключения соседа к шине РЕ с целью воровства электричества. Такой вариант интересен, но не реализуемый. В одной из наших публикаций, где описывались различные конструкции электросчетчиков, рассматривалась их устойчивость к различным способам воровства электрической энергии. В частности, там разбирался вариант использования земли в качестве рабочего нуля и объяснялось, почему данный способ не работает на современных устройствах энергоучета.

Как уже упоминалось выше, в нулевом рабочем проводе ток может превысить фазный только в случаях проявления высших гармоник. Подключение соседа к нулю (в Вашем щитке) вызовет перегрев данного провода, если в результате таких действий образуется плохой контакт с общей шиной.

Чем опасен перегрев нулевого провода?

Подобная нештатная ситуация почти гарантированно приведет к обрыву нуля. Чем это грозит, неоднократно упоминалось в других публикациях на нашем сайте. Кратко напомним, о чем в них шла речь, начнем с обрыва нуля в трехфазных сетях.

Обрыв нуля в трехфазной сети

Как видно из приведенного изображения, обрыв нулевого провода приведет к несимметрии фазных напряжений, такую нештатную ситуацию также называют перекосом фаз. В результате аварии в однофазных сетях могут образоваться напряжения близкие по величине к линейному, то есть, приблизиться вплотную к 380 В. Чем это грозит бытовой технике и электронике? В лучшем случае сработает защита БП, в худшем, — устройствам потребуется дорогостоящий ремонт.

Если отгорит ноль в системе однофазных нагрузок, то последствия для бытовой техники будут не столь печальные, как случае электрической сети на 3 фазы. Ниже продемонстрированы наиболее вероятные точки обрыва для бытовой сети.

Вероятные места обрыва нуля в квартире

Из рисунка видно, что обрыв возможен на вводных контактных соединениях автомата защиты. Проблемы с электрическим контактом могут образоваться на шине РЕ (особенно, если разводка выполнена алюминиевым кабелем). Последний вариант – обрыв в розетке. При любом из перечисленных вариантов бытовая техника не будет работать.

Казалось бы, ничего страшного, но любой прибор, оставшийся подключенным к сети, приведет к тому, что нейтральном проводе образуется опасный потенциал. В системе заземления TN-C это может создать прямую угрозу для жизни, поскольку на зануленном корпусе появится фазное напряжение. В более современных системах TN-C-S, подобная ситуация приведет к короткому замыканию и срабатыванию АВ.

Как не допустить критического нагрева нуля?

Поскольку в масштабах квартиры влияние высших гармоник незначительно, то сразу перейдем к проблеме плохих электрических контактов. Если Вы обнаружили в квартирном щитке проблемное место, где греется электрическое соединение, то в первую очередь отключите вводный автомат и убедитесь, что после этого ток не течет. Проверку лучше выполнить, комбинируя пробник напряжения и мультиметр, включенный в режим измерения переменного тока.

Убедившись в отключении питания, ослабьте проблемный контакт (как правило, это винтовой зажим), чтобы извлечь из него провод. Произведите его зачистку, а также зажима. Если разводка щитка выполнена многожильным медным проводом, то его концы необходимо залудить или обжать. После этого можно собрать контакт. Следует учитывать, что «пережатие» провода винтовым соединением также нежелательно, как и слабый зажим.

Прямой контакт меди и алюминия недопустим, поскольку эти материалы образуют гальваническую пару, в результате электрическое сопротивление такого соединения довольно быстро возрастет.

Если монтаж выполнен при помощи тонких проводов, то желательно произвести их замену. Как правильно подобрать сечение в зависимости от тока нагрузки, рассказано на нашем сайте.

Защита от перекоса фаз

Наиболее оптимальный вариант для данного случая — установка реле напряжения.

Реле напряжения

Это устройство обеспечит защиту, как от падения напряжения, так и его чрезмерного увеличения. В качестве альтернативного решения можно предложить установку стабилизатора на всю квартиру. Несмотря на более высокую стоимость преимущества очевидны – «проседание» или перенапряжение не будет вызывать отключение подачи электроэнергии.

Читать еще:  Как и чем спаять провода в распределительной коробке

Нулевой провод в трехфазной сети

В чем опасность обрыва нулевого провода в доме или в квартире

Обрыв нулевого провода в трехфазной электрической сети — опасное явление, которое может вывести из строя бытовые электроприборы и поразить людей электрическим током. От подстанции (ТП) к потребителю, в данном случае в дом, электричество поступает по четырем проводникам – трем фазным и проводнику, который совмещает функции рабочего нулевого и защитного заземляющего проводника. Ток поступает по наиболее распространенной системе заземления TN-C-S.

Система данного типа предусматривает заземление нейтрали источника питания – трансформатора подстанции. После ввода в здание совмещенный проводник разделяется на рабочий нулевой проводник и защитный, а затем распределяется между квартирами. Три фазы электрической сети при вводе в дом распределяются на примерно равное количество квартир. Но при нормальном режиме работы электрической сети нагрузка по трем фазам неравномерная, так как жители квартир по-разному эксплуатируют электроприборы, и в разные промежутки времени нагрузка по фазам отличается, причем значительно. При этом напряжение по фазам практически равное, так как нулевой провод играет роль балансира, снижает так называемое напряжение смещения нейтральной точки практически до нуля.

В случае обрыва нулевого провода на линии электропередач тут же возникает дисбаланс — возникает перекос фазных напряжений. При этом по одной фазе, где нагрузка меньше напряжение резко возрастает, а на самой загруженной фазе наоборот – падает. При этом в зависимости от перекоса, напряжение на фазах может колебаться от нескольких десятков вольт до значения линейного напряжения трехфазной сети — 380 В. В данном случае все зависит от величины перекоса нагрузок по фазам электрической сети.

Последствия таких перепадов напряжения наверняка всем известны. Значительное превышение напряжения в бытовой сети приведет к выходу из строя практически всей техники, которая в данный момент работала от сети. Чрезмерно низкое напряжение за считанные минуты выведет из строя компрессор холодильника или кондиционера, электродвигатель стиральной машины и другие электроприборы, конструктивно имеющие электродвигатели. Ненормальный режим работы электроприборов может закончиться выходом их из строя с последующим возгоранием.

Выход из строя бытовой техники — это не самое страшное. В случае перегорания нуля до ввода в дом, то есть до разделения его на нулевой и заземляющий проводник, на всех заземленных элементах оборудования, бытовых электроприборах появляется фазное напряжение. В случае прикосновения к таким электроприборам человек будет поражен электрическим током.

Если в доме реализована система уравнивания потенциалов, которая предусматривает электрическое соединение с заземляющей шиной всех металлических элементов конструкции, металлических трубопроводов, то вероятность поражения электрическим током снижается, так как человек не будет касаться двух точек с разным потенциалом. Но, как показывает практика, такая система в большинстве домов не реализована и в случае появления на корпусе электроприбора опасного потенциала и прикосновения человека одновременно к данному электроприбору и металлическому предмету, имеющему другой потенциал, человек будет поражен электрическим током.

Как защитить себя и бытовые электроприборы от вышеописанных последствий?

Основная мера защиты от возможных перепадов напряжения — это установка реле напряжения на вводе домашнего распределительного щитка. В случае чрезмерного снижения или увеличения напряжения реле напряжения мгновенно обесточит электропроводку, защитив при этом включенные в сеть электроприборы.

В случае повреждения нулевого провода и появления опасного потенциала на корпусе оборудования, ни одна из систем заземления сети не даст гарантированную защиту. В сети системы TN-C-S защиты от возможного появления опасного потенциала на корпусе оборудования в случае повреждения нуля до места его разделения нет. В данном случае гарантировать безопасность эксплуатации заземленных электроприборов можно только в том случае, если снабжающая организация выполняет периодические проверки состояния сетей от питающей подстанции непосредственно до главного распределительного щитка дома и своевременно устраняет возможные нарушения.

В электрической сети, где реализована система TT, обрыв нулевого провода не приводит к появлению опасного потенциала на корпусе оборудования. Но при этом перекос напряжений по фазам может возникнуть, поэтому реле напряжения в данных сетях также необходимо установить для защиты бытовых электроприборов.

Решением данной опасной ситуации будет устройство, измеряющее дифференциальную утечку тока и при превышении определенного уровня отключит электрическую линию. Это устройство защитного отключения или дифференциальный автомат. В данном случае при возможной утечке тока на заземленный корпус УЗО моментально обесточит электропроводку. Ни в коем случае не устанавливайте электронное УЗО, а только электромеханическое, т.к. первое при обрыве нуля становится бесполезным прибором. Электронная схема в электронном УЗО при обрыве нуля перестает работать, а с ней весь прибор. Электромеханическое УЗО не имеет такового недостатка и четко отрабатывает пропадание нуля, отключая контролируемую линию.

Наиболее полным техническим решением защиты от обрыва нуля в любой системе электрической сети по нашему мнению будет совместное использование в схеме электропитания реле контроля напряжения и электромеханического УЗО (дифференциального автомата).

Нулевой провод в трехфазной сети

Нулевой провод в общем случае — это провод, по которому происходит возвращение остаточного тока по замкнутому контуру.

Не смотря на название, нулевой провод может обладать потенциалом в некоторые моменты времени. На схемах нулевой провод обычно обозначают буквой $N$.

Роль нулевого провода

Зачем же нужен нулевой провод в трехфазной цепи? Назначение нулевого провода в трехфазных цепях следующее: нулевой провод используется для выравнивания фазных напряжений.

Фазное напряжение — это напряжение между нулём и фазным проводом.

Если нагрузка на каждом из фазных проводов одинаковая (то есть одинаковая потребляемая мощность у каждого из потребителей фазного тока от фазных проводов 1-3) — то система будет оставаться рабочей даже в случае обрыва нулевого провода, так как в каждый момент времени разница потенциалов между нулевым и любым из фазных проводов будет одинаковой.

Готовые работы на аналогичную тему

  • Курсовая работа Назначение нулевого провода 420 руб.
  • Реферат Назначение нулевого провода 260 руб.
  • Контрольная работа Назначение нулевого провода 190 руб.

Роль нулевого провода при неравномерной нагрузке

Если нагрузка на каждой фазе будет разной — то необходимо обязательно подключать нулевой провод.

В случае его обрыва или внезапного повышения сопротивления на нём, напряжение распределится согласно потребляемым мощностям на каждую из нагрузок трёхфазной цепи и, соответственно, чем меньше потребляемая мощность — тем большее фазное напряжение получит потребитель тока.

Это неприемлемо для многих электроприборов и может вызвать их неисправность и даже пожар, именно для избегания таких неприятностей к каждой розетке подведён нулевой провод.

Роль нулевого провода при соединении звездой

Звезда — это особый способ соединения концов обмоток генератора, при котором все они соединяются в одну точку, называемую нейтралью.

При этом провода на выходе у потребителя также соединяются в аналогичную точку, а провод, соединяющий две нейтрали, называется нулевым. Провода же, соединяющие начало фазы у потребителя и генератора называются линейными.

В случае подключения трёхфазного двигателя нагрузка для всех трёх фазовых проводов будет одинаковая, соответственно, возвращение остаточного тока на генератор возможно по одному из фазовых проводов, на котором фазовое напряжение в данный момент времени равно нулю.

Если же нагрузки на стороне потребителя неодинаковые, остаточный ток после каждой нагрузки будет выходить разным и, соответственно, фазовое напряжение тоже будет разное.

Если говорить упрощённо, в каждый момент времени оно будет равно напряжению между проводом, который в данный момент времени не является несущим фазовый ток, и фазовым проводом — то есть оно будет разным.

Использование же нулевого провода в таком случае поможет предотвратить эти перепады и таким образом исключить возникновение неисправностей в сети.

Рисунок 1. Роль нулевого провода в трехфазной цепи при соединении звездой

На рисунке представлена схема подключения трёхфазной цепи при подключении звездой.

Ток по нейтральному проводу, соединяющему между собой две нейтрали, будет течь только при включении (или выключении) всей системы и старте работы первой из обмоток генератора.

В остальное время он будет возвращаться на генератор по фазовым проводам по очереди.

Фазовое напряжение на рисунке обозначено с помощью букв $U_A$, $U_C, U_B$, ЭДС на обмотках генератора — $E_C, E_A$ и $E_B$, а ток, текущий по фазовым проводам — буквами $I_C, I_A$ и $I_B$.

Сам генератор обозначен буквой $G$, а потребитель буквой $M$. Сопротивления у потребителя обозначены буквами $Z_A, Z_B$ и $Z_C$.

Линейные напряжения — то есть напряжения между фазами — обозначены соответственно $U_CA, U_AB, U_BC$. На рисунке стрелками показаны провода, к которым нужно подключить вольтметр для измерения линейного напряжения.

Маркировка нулевых проводов

Для того чтобы сделать нулевой провод легко отличаемым от остальных, соответственно ГОСТ для них принято использовать кабели бело-голубого или просто голубого цвета.

При совмещении нулевого провода с заземлением используются полосатые жёлто-зелёные кабели с концами проводов, обозначенными синим цветом:

Контракт Бак ЛТД
Добавить комментарий