Реверсивный пускатель трехфазный
Реверсивный пускатель трехфазный
Магнитный пускатель позволяет осуществить дистанционное управление, включать и отключать потребителя на расстоянии с пульта управления. Самое распространенное применение магнитного пускателя получили асинхронные двигателя, при помощи его осуществляется пуск, стоп и реверс (смена направления вращение вала) двигателя.
Еще магнитный пускатель служит для разгрузки маломощных контактов. Например, возьмем простой выключатель, который стоит дома, он рассчитан включать и отключать нагрузку не более 10 Ампер, определяем мощность: ток умножаем на напряжение 10*220 = 2200 Вт. Это значит, что через этот выключатель, можно, включить не более двадцати двух лампочек мощностью 100Вт.
Разгрузим контакт простого выключателя с помощью магнитного пускателя третьей величины, у которого силовые контакты рассчитаны включать и отключать ток 40 Ампер, мощность, которую он сможет включать и отключать: 40*220 = 8800 Вт. В итоге сможем одним щелчком выключателя, включать и отключать всю алею уличного освещения через контакты магнитного пускателя.
Управляется магнитный пускатель третьей величины с помощью электромагнитной катушки, которая потребляет 200Вт в момент срабатывания, а в сработанном состоянии потребляет всего 25Вт, что получается 200/380 = 0,52 А — это ток которым необходим, чтобы пускатель сработал и включил основную силовую цепь. Теперь представьте, что можно поставить маленький компактный выключатель, который будет управлять магнитным пускателем, а он своими силовыми контактами будет включать и отключать большие мощности.
Для чего нужно тепловое реле в комплекте с магнитным пускателем. Тепловое реле защищает двигатель от перегруза и от неполнофазного режима работы. Что такое неполнофазный режим – это когда при работе электродвигателя исчезла одна из трех фаз.
Причины однофазного режима: перегорела плавкая вставка на одной фазе, подгорел контакт на клемме или выкрутился винт на клеммнике магнитного пускателя и выпал фазный провод от вибрации, плохой контакт на силовых контактах пускателя.
При перегрузке двигателя или работе в неполнофазном режиме увеличивается ток, проходящий через тепловое реле. В тепловом реле нагреваются токопроводящие биметаллические пластины, под действием тепла они выгибаются, и механически воздействует на размыкание контакта в тепловом реле, который отключает питание катушки магнитного пускателя, происходит отключение двигателя по средствам пускателя.
СЕМА ПОДКЛЮЧЕНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ ЧЕРЕЗ МАГНИТНЫЙ ПУСКАТЕЛЬ.
Схема состоит:
из QF — автоматического выключателя; KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск). Рассмотрим работу схемы в динамике.
Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя.
КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.
Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.
Не реверсивная схема магнитного пускателя с катушкой 380В.
РЕВЕРСИВНАЯ СХЕМА МАГНИТНОГО ПУСКАТЕЛЯ.
Схема состоит аналогично, так же, как на не реверсивной схеме, единственно добавилась кнопка реверса и магнитный пускатель.
Принцип работы схемы немного сложнее, рассмотрим в динамике. Что требуется от схемы, реверс двигателя за счет переворачивания местами двух фаз. При этом нужна блокировка, которая не давала бы включиться второму пускателю, если первый находится в работе и наоборот. Если включить два пускателя одновременно то произойдет КЗ – короткое замыкание на силовых контактах пускателя.
Включаем QF – автоматический выключатель, давим кнопку «Пуск[1]» подаем напряжение на КМ1 катушку пускателя, пускатель срабатывает. Силовыми контактами включает двигатель, при этом шунтируется пусковая кнопка «Пуск [1]».
Блокировка второго пускателя — КМ2 осуществляется, нормально замкнутым КМ1 — блок контактом. При срабатывании КМ1 — пускателя, размыкается КМ1 — блок контакт тем самым размыкает подготовленную цепочку катушки второго КМ2 — магнитного пускателя.
Чтобы осуществить реверс двигателя, его необходимо отключить. Отключаем двигатель, нажатием кнопку «С — стоп», снимается напряжение с катушки, которая находилась в работе. Пускатель и блок контакты под действием пружин возвращаются в исходное положение.
Схема готова к реверсу, нажимаем кнопку «Пуск[2]», подаем напряжение на катушку — КМ2, пускатель — КМ2 срабатывает и включает двигатель в противоположном вращение. Кнопка «Пуск[2]» шунтируется блок контактом — КМ2, а нормально замкнутый блок контакт КМ2 размыкается и блокирует готовность катушки магнитного пускателя — КМ1.
При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.
Принцип работы схемы магнитного пускателя с катушкой на 220В тот же, что и с катушкой на 380В.
Не реверсивная схема магнитного пускателя с катушкой 220В.
Просмотр и ввод комментариев к статье
Пускатель реверсивный трехфазный АПР
Областью применения реверсивного пускателя АПР являются системы управления, регулирования, защитной автоматики, в том числе для газовых котельных.
Блок трех фазного реверсивного пускателя предназначен для:
- Обеспечения смены направления вращения асинхронных трехфазных двигателей, в том числе управления МЭО (механизм электрический однооборотный), построенных на основе трехфазных асинхронных двигателях;
- Сопряжения выходов автоматики 220В с трехфазными асинхронными двигателями;
- Питания одного измерителя-регулятора типа АДР, АДН.
Технические характеристики:
Параметр | значение |
Напряжение питания, В | 170…270 |
Число фаз питания | 3 |
Частота, Гц | 50 (+-1%) |
Ток потребления, А | 0,02 |
Нагрузка силовая (220В, 3 фазы): | |
>> Коммутируемое напряжение. Ср.кв.знач, В | 170…270 |
>> Минимальный коммутируемый ток по каждой фазе, А | 0,2 |
>> Максимальный коммутируемый ток по каждой фазе, А | 2 |
>> Максимальный импульсный ток(tимп=10мс), А | 20 |
>> Ток утечки на выходе, мА | 2.3 |
Напряжение изоляции между управляющими и коммутируемыми цепями, VAC | 1500 |
Управление «ВПЕРЁД», «НАЗАД» при помощи сигналов 220В: | |
>> Напряжение, подаваемое на клеммы 1,2 разъёма Х2, В | 220 |
>> Частота напряжения , подаваемая на клеммы 1,2 разъёма Х2, Гц | 50 |
>> Ток, потребляемый по цепям клемм 1,2 разъёма Х2, В | 220 |
Время задержки при переключении направления вращения, с | 0,5 |
Принцип работы:
АПР поддерживает управление входным напряжением 220В переменного тока до 80мА частотой 50Гц.
Подключение производят к разъёму Х2. При этом нейтраль (N) подключают к контакту 3 разъёма Х2. К разъему Х3 нейтраль (N) не подключается.
При появлении сигнала «ВПЕРЁД» и отсутствии сигнала «НАЗАД» происходит включение трёх симисторов, обеспечивающих прохождение переменного тока трёх фаз от клемм 1, 2 и 3 разъёма Х3 к клеммам 1, 2 и 3 разъёма Х4 соответственно.
А при появлении сигнала «НАЗАД» и отсутствии сигнала «ВПЕРЁД» происходит включе-ние трёх симисторов, обеспечивающих прохождение переменного тока трёх фаз от клемм 1, 2 и 3 разъёма Х3 к клеммам 1, 3 и 2 разъёма Х4 соответственно.
Таким образом, при сигнале «НАЗАД» происходит перекоммутация фаз B и C.
Каждая из фаз включается (и отключается) в момент перехода напряжения через «0 В». Это обеспечивает снижение помех при коммутации нагрузки.
При одновременном поступлении сигналов «ВПЕРЁД» и «НАЗАД» происходит отключение всех трёх фаз от нагрузки.
При смене направления вращения АПР выдерживает паузу 0,5 секунды для снижения пус-кового тока. Если же после отключения нагрузки происходит повторное включение без смены направления вращения, то пауза не выдерживается.
Подключение внешних цепей:
Phoenix Contact / Аналог ПБР-3А, бесконтактный реверсивный пускатель электродвигателя (контактор), CONTACTRON
Трехфазный полупроводниковый реверсивный контактор или бесконтактный реверсивный пускатель «4-в-1», постоянного тока (24В) и переменного (230B/500В), 2 Ампера или 9 Aмпер. Пускатель бесконтактный реверсивный ПБР-3А CONTACTRON полный аналог
Устройство управления двигателем (бесконтактный реверсивный пускатель) CONTACTRON измеряет важнейший электрический параметр установки эффективную мощность электродвигателя.
1. Пуск в обратном направлении
Простое управление с помощью сигнала 24 В пост. тока или 230 В пер. тока. Встроенная схема блокировки и выполненный электромонтаж.
2. Пуск в прямом направлении
Простое управление с помощью сигнала 24 В пост. тока или 230 В пер. тока. Встроенная блокировка и выполненный электромонтаж.
3. Защита электродвигателя
Защита электродвигателя с помощью электронного реле с автоматическим и дистанционным сбросом аварийного сигнала.
4. Аварийное отключение
Встроенная функция безопасности позволяет применять данные контакторы в системах, требующих высокого уровня безопасности.
Трехфазный полупроводниковый реверсивный контактор (пускатель) «4 в 1», сегодня 18 02 2021 :
( 82.93 € ) 74.64 €
( 136.46 € ) 122.81 €
( 147.94 € ) 133.15 €
( 157.42 € ) 141.68 €
( 157.42 € ) 141.68 €
( 158.99 € ) 143.09 €
( 158.99 € ) 143.09 €
( 164.69 € ) 148.22 €
( 164.69 € ) 148.22 €
( 164.69 € ) 148.22 €
( 164.69 € ) 148.22 €
( 165.77 € ) 149.19 €
( 165.77 € ) 149.19 €
( 169.20 € ) 152.28 €
( 169.20 € ) 152.28 €
( 231.45 € ) 208.31 €
( 231.45 € ) 208.31 €
( 231.45 € ) 208.31 €
( 231.45 € ) 208.31 €
( 310.93 € ) 279.84 €
( 310.93 € ) 279.84 €
( 322.67 € ) 290.40 €
( 336.68 € ) 303.01 €
( 701.43 € ) 631.29 €
( 841.69 € ) 757.52 €
( 988.37 € ) 889.53 €
( 988.37 € ) 889.53 €
( 988.37 € ) 889.53 €
Все реверсивные пускатели Phoenix Contact
- Contactron
- Акция!
Фиксированный курс дешевле не будет!
Преимущества
Занимает места на 75 % меньше! Время монтажа меньше на 75 %! Срок службы больше в 10 раз! Простота применения и надежность!
Классическая цепь реверсирования включает в себя реверсивный контактор, реле защиты двигателя, дополнительный контактор аварийного отключения.
Трехфазный полупроводниковый реверсивный контактор.pdf (1.6 Мб)
Все эти функции реализованы в новых полупроводниковых реверсивных контакторах «4-в-1» серии CONTACTRON, имеющих толщину 22,5 мм и предназначенных для управления электродвигателями мощностью до 4 кВт.
Это значительно упрощает монтаж и позволяет добиться экономии монтажного пространства при установке на DIN-рейку. Кроме того, практическая неизнашиваемость коммутационных элементов значительно повышает степень готовности оборудования.
Контроль
Используйте электродвигатель в качестве датчика для контроля за износом и неисправностями. Программное обеспечение для устройства контроля электродвигателя является удобным инструментом, позволяющим решать таки задачи, как конфигурирование, диагностика и регистрация рабочих параметров.
Защита электродвигателя
Терморезистор, электронное реле защиты электродвигателя, настраиваемые параметры срабатывания: устройство контроля электродвигателя обладает полным спектром функций защиты электродвигателя, собранных в одном корпусе.
Каким образом CONTACTRON защищает установку?
Устройство контроля значения cos phi распознает состояние недостаточной нагрузки, а реле защиты электродвигателя следит только за перегрузкой.
Благодаря данным об эффективной мощности, измеренной устройством контроля электродвигателя, вы получаете сведения о всех критических величинах нагрузки. При необходимости, данное устройство отключит приводной механизм и таким образом защитит электродвигатель и дорогостоящую установку.
Интерфейс PROFIBUS
Экономьте монтажное пространство и расходы с помощью дополнительных шлюзов для шины PROFIBUS. С помощью Т-образного соединителя возможно подключение к полевой шине до 32 устройств контроля электродвигателя.
Спешите заказать, скидки на новинку до 30%
Предложение ограничено, узнайте подробности:
Евгений ГОРШКОВ
телефон: (495) 22-39-220 # (1)
почта: jack@denol.ru
Трехфазный полупроводниковый реверсивный контактор.pdf (1.6 Мб)
Клеммы Инструмент Источники питания Контакторы Силовые автоматы Предохранители Автоматические выключатели Автоматы защиты двигателя Кнопки и световые колонны Датчики давления и потока УЗО Предохранители
Компания «Денол» официальный дистрибьютор Moeller / EATON, Phoenix Contact (Феникс Контакт), Ifm electronic, Rittal, ETI (Словения), Socomec. Покупайте онлайн или по телефону: (495) 22-39-220 / (8 800) 555-33-20.
АПР–пускатель реверсивный трехфазный
Цена 12150 руб.
- Описание
- Документация
- Описание
- Загрузки
Наименование | Размер | Ссылка |
---|---|---|
Декларация о соответствии АПР | 820.7 Кбайт | Загрузить |
Руководство по эксплуатации АПР, редакция 1.1 | 139.24 Кбайт | Загрузить |
Краткое описание АПР | 111.92 Кбайт | Загрузить |
Руководство по эксплуатации АПР-01.2, редакция 2.0 | 132.63 Кбайт | Загрузить |
Блок трех фазного реверсивного пускателя предназначен для:
- обеспечения смены направления вращения асинхронных трехфазных двигателей, в том числе двигателя управления МЭО (механизм электрический однооборотный), построенных на основе трехфазных асинхронных двигателей;
- сопряжения выходов автоматики 220 В с трехфазными асинхронными двигателями;
- питания одного измерителя-регулятора типа АДР, АДН.
Технические характеристики
Параметр | Значение |
---|---|
Напряжение питания, В | 170…270 |
Число фаз питания | 3 |
Частота, Гц | 50 (±1%) |
Ток потребления, А | 0,02 |
Нагрузка силовая (380 В, 3 фазы): | |
>> Коммутируемое напряжение. Ср. кв. знач, В | 170…270 |
>> Минимальный коммутируемый ток по каждой фазе, А | 0,2 |
>> Максимальный коммутируемый ток по каждой фазе, А | 2 |
>> Максимальный импульсный ток(tимп = 10 мс), А | 20 |
>> Ток утечки на выходе, мА | 2,3 |
Напряжение изоляции между управляющими и коммутируемыми цепями, VAC | 1500 |
Управление «ВПЕРЁД», «НАЗАД» при помощи сигналов 220 В | |
>> Напряжение, подаваемое на клеммы 1,2 разъёма Х2, В | 220 |
>> Частота напряжения, подаваемая на клеммы 1,2 разъёма Х2, Гц | 50 |
>> Ток, потребляемый по цепям клемм 1,2 разъёма Х2, В | 220 |
Время задержки при переключении направления вращения, с | 0,5 |
Принцип работы
АПР поддерживает управление входным напряжением 220 В переменного тока до 80 мА частотой 50 Гц.
Подключение производят к разъёму Х2. При этом нейтраль (N) подключают к контакту 3 разъёма Х2. К разъёму Х3 нейтраль (N) не подключается.
При появлении сигнала «ВПЕРЁД» и отсутствии сигнала «НАЗАД» происходит включение трёх симисторов, обеспечивающих прохождение переменного тока трёх фаз от клемм 1, 2 и 3 разъёма Х3 к клеммам 1, 2 и 3 разъёма Х4 соответственно.
А при появлении сигнала «НАЗАД» и отсутствии сигнала «ВПЕРЁД» происходит включение трёх симисторов, обеспечивающих прохождение переменного тока трёх фаз от клемм 1, 2 и 3 разъёма Х3 к клеммам 1, 3 и 2 разъёма Х4 соответственно.
Таким образом, при сигнале «НАЗАД» происходит перекоммутация фаз B и C.
Каждая из фаз включается (и отключается) в момент перехода напряжения через «0 В». Это обеспечивает снижение помех при коммутации нагрузки.
При одновременном поступлении сигналов «ВПЕРЁД» и «НАЗАД» происходит отключение всех трёх фаз от нагрузки.
При смене направления вращения АПР выдерживает паузу 0,5 секунды для снижения пускового тока. Если же после отключения нагрузки происходит повторное включение без смены направления вращения, то пауза не выдерживается.
Схема подключения реверсивного магнитного пускателя
В каждой установке, в которой требуется запуск электродвигателя в прямом и обратном направлении обязательно присутствует магнитный пускатель реверсивной схемы. Подключение такого компонента не является столь сложной задачей как, кажется, на первый взгляд. К тому же востребованность таких задач появляется довольно часто. К примеру, в сверлильных станках, отрезных установках или же лифтах, если это касается не бытового использования.
Принципиальным отличием такой схемы от одинарной является наличие дополнительной цепи управления и немного измененной силовой части. Также для осуществления переключения такая установка оснащена кнопкой (SB3 на рисунке). Такая система, как правило, защищена от короткого замыкания. Для этого перед катушками в силовой цепи предусмотрено наличие двух нормально — замкнутых контакта (КМ1.2 и КМ2.2) производные от контактных приставок, размещенных в позиции магнитных пускателей (КМ1 и КМ2).
Для того чтобы приведенная схема была читабельной, изображения цепи на ней и силовые контакты имеют различное цветовое оформление. Также для упрощения, здесь не были указаны пары силовых контактов, обычно имеющие цифробуквенные аббревиатуры. Впрочем, с данными вопросами можно ознакомиться в статьях, посвященных подключению стандартных магнитных пусковых систем.
Описание этапов включения
При задействовании выключателя QF1, одновременно все три фазы примыкают к силовым контактам пускателя (КМ1 и КМ2) и пребывают в таком положении. При этом первая фаза, представляющая собой запитку для цепи управления, проходя через автомат защиты всей схемы управления SF1 и кнопку выключения SB1, подает напряжение на контактную группу под третьим номером, который относится к кнопкам: SB2, SB3. При этом
существующий у пускателей (КМ1 и КМ2) контакт под аббревиатурой 13НО приобретает значение дежурного. Таким образом система является полностью готовой к работе.
Прекрасная схема, которая наглядно показывает механизм монтажа реальных элементов представлена на фото ниже.
Переключение системы при обратном вращении двигателя
Задействовав кнопку SB2, мы направляем напряжение первой фазы на катушку, которая относится к магнитному пускателю КМ1. После этого происходит задействование нормально –разомкнутых контактов и отключение нормально –замкнутых. Таким образом, замыкая контакт КМ1 происходит эффект самозахвата пускателя. При этом все три фазы поступают на соответствующей обмотке двигателя, который, в свою очередь, начинает создавать вращательное движение.
Созданная схема предусматривает наличие только одного рабочего пускателя. К примеру, может работать только КМ1 или же, наоборот, КМ2. На приведенном рисунке, вы можете увидеть схему, при которой двигатель работает в нормальном направлении. Указанная цепь обладает реальными элементами.
Изменение вращательного движения
Теперь для придания обратного направления движения, вам необходимо изменить положение силовых фаз, что удобно сделать при помощи переключателя КМ2.
Все происходит благодаря размыканию первой фазы. При этом все контакты возвращаются в исходно положение, обесточив обмотку двигателя. Данная фаза является ждущим режимом.
Задействование кнопки SB3 приводит в действие магнитный пускатель с аббревиатурой КМ2, который, в свою очередь, меняет положение второй и третьей фазы. Это действие заставляет двигатель вращаться в обратном направлении. Теперь КМ2 является ведущим и пока не произойдет его размыкание КМ1 будет не задействован.
Силовые цепи
Фотография, представленная ниже, наглядно описывает работу силовых цепей. В таком положении двигатель имеет нормальное вращение.
Теперь же мы видим, что произошел переброс фазового напряжения и поскольку вторая и третья фазы изменили положение, двигатель приобрел обратное вращение.
На фотографии, где представлены реальные элементы вы можете увидеть схему подключения, на которой первая фаза отмечена белым цветом, вторая красным и третья голубым цветом.
Как производится защита силовых цепей от короткого замыкания
Как уже было сказано ранее, прежде чем произвести процесс изменения фазности, следует остановить вращение двигателя. Для этого в системе как раз и предусмотрены нормально –замкнутые контакты. Поскольку при их отсутствии, невнимательность оператора рано или поздно привела бы к межфазному замыканию, которое бы произошло в обмотке двигателя второй и третьей фазы. Предложенная схема является оптимальной, поскольку допускает работу только одного магнитного пускателя.
Заключение
Представленная информация может с первого взгляда показаться сложной. Однако, предоставленные схемы и фото являются наглядным примером решения подобной задачи. Их изучение гарантировано обеспечит успех создаваемой системы. Нередко в помощь начинающим отличным примером может служить видеокурс.
Поскольку информация, представленная в движении, имеет куда большую наполненность и структурную ценность.
Также нелишним будет ознакомиться с информацией, касающейся защиты всей цепи электрического двигателя, что даст возможность к созданию надежных систем.
Схема реверсивного пускателя
Для пуска, остановки моторов, управления рабочими процессами, совершаемыми электродвигателями, применяются магнитные пускатели – аппараты, конструктивное исполнение которых позволяет включать и отключать электроцепи с протекающим значительным током.
Как устроен магнитный пускатель
Контакторы, как и пускатели, замыкают и размыкают электроцепи, но в устройстве аппаратов имеются различия. Контактор служит в качестве основного компонента магнитного пускателя. Он обладает тремя полюсами. Кроме него устройство содержит защитную часть и пост с кнопками для ручного управления.
Закрытие контактов пускателя обеспечивается электромагнитом. В нормальном состоянии контакты разомкнуты, а при протекании тока через катушку происходит притяжение якоря и замыкание силовой контактной группы.
Устройство магнитного пускателя
Назначение отдельных элементов:
- Кнопочный узел. Обычный пускатель оснащен двумя кнопками: пуска и останова. Реверсивный аппарат имеет три. Третья служит для того, чтобы произвести запуск электромотора с обратным направлением вращения. Иногда электроаппарат оснащается сигнальными лампами. С помощью кнопок осуществляется активация контактора;
- Для выполнения других операций могут служить вспомогательные нормально закрытые или открытые контакты;
- Управляющий электромагнит. Напряжение на нем может быть идентичным напряжению на силовых контактах. Иногда цепи электромагнита питаются от 220 В переменного тока. Когда катушка активирована, в результате возникновения магнитной связи происходит притяжение якоря, и силовые контакты включаются. Ток течет к двигателю или другой нагрузке. При обесточивании электромагнита пружина заставляет контакты размыкаться, отключая электромотор;
- Тепловое реле. Служит для защиты двигателя от повреждений в случае короткого замыкания или перегрева, связанного с перегрузкой. Обычно это биметаллическая пластина, которая, изгибаясь при нагревании, размыкает электроцепь, снимая питание с электромагнита.
Подключение обычного пускателя
Подключение обычного пускателя
На электросхеме подключения магнитного пускателя обозначены:
- QF1 – автомат для подачи питания на аппарат;
- КМ – катушка электромагнита;
- КМ1 и КМ1.1 – контакты катушки;
- кнопки пуска и останова;
- М – асинхронный электромотор.
Этапы работы схемы:
- Включением QF1 и затем пусковой кнопки подается напряжение на КМ;
- Электромагнит включает свои силовые контакты КМ1, подавая питающее напряжение на электромотор;
- Одновременно включается вспомогательный контакт КМ1.1, который производит блокировку пусковой кнопки, позволяя току течь и при ее отпускании;
- Для останова электромотора достаточно нажать на соответствующую кнопку, разрывающую питающую цепь электромагнита, якорь которого пружины возвращают на место, и силовые контакты КМ1 также отключаются.
Включением вспомогательного контакта КМ1.1 выполняется нулевая защита электромотора. При пропадании питания питающей сети или резком снижении напряжения до 0,6 Uн силовые и вспомогательный контакты электромагнита отключатся.
Важно! Когда электропитание восстановится, запуск электромотора не состоится без повторного нажатия пусковой кнопки. Если используются другие коммутационные аппараты, например, рубильник, то произойдет самопроизвольный запуск мотора, что может спровоцировать аварийную ситуацию.
Подключение реверсивного пускателя
Для выполнения обратного вращения электромотора применяется схема реверс. В конструкцию реверсивного магнитного пускателя добавляются еще один пускатель с тремя полюсами и кнопка для запуска обратного вращения.
Подключение реверсивного пускателя
Основные принципы работы схемы реверсивного пускателя:
- двигательный реверс осуществляется при включении двух фаз наоборот;
- должно быть выполнено схемное блокирование для недопущения одновременного подключения обеих силовых контактных групп во избежание короткого замыкания.
Поэтапная работа схемы:
- При подключении автомата QF производится подача напряжения на схему;
- Нажимается копка прямого запуска. Электромагнит КМ1 получает напряжение, и включается его силовая контактная группа. Одновременно дополнительный контакт КМ1.1 шунтирует пусковую кнопку, а другой контакт КМ1.2, будучи в нормальном состоянии замкнутым, отключается, разрывая питающую электроцепь контактора КМ1. Электромотор вращается в прямом направлении;
Важно! Запуск реверсивного вращения невозможен без останова двигателя.
- Нажатием остановочной кнопки разрывается общая питающая цепь обоих электромагнитов, и пружины разъединяют силовые контакты КМ1. Мотор останавливается;
- Теперь можно задействовать кнопку реверсивного пуска. Она подает питание на второй электромагнит КМ2. Включаются силовая контактная группа КМ2, а также дополнительные контакты. При этом КМ2.1 осуществляет блокирование кнопки реверсного вращения, а КМ2.2 разъединяет питающую электроцепь КМ1.
Важно! Чтобы схема работала безошибочно, надо обеспечить размыкание силовой контактной группы КМ1 не позднее, чем замкнутся дополнительные контакты КМ1.2 в питающей электроцепи КМ2. Для этого производят механическое регулирование контактов по якорному ходу.
В некоторых схемах пускателей выполняется двойное блокирование. Иногда дополнительно используется механическое блокирование с помощью перекидывающегося рычага.
Особенности подключения силовых контактов
Из схемы реверсивного магнитного пускателя видно, что фаза А силовых контактов обоих пускателей соединяется без изменений. А две другие фазы перевернуты наоборот. Фаза В подсоединена к фазе С, а фаза С – к фазе В. В результате на электромоторе меняется чередование фаз, и он вращается в обратном направлении.
Соединение контактов реверсивного пускателя
Подсоединение пускателя:
- Фаза А питающего напряжения подсоединяется к крайнему слева входному контакту первого пускателя и затем к аналогичному контакту второго;
- Выход этого контакта от первого пускателя соединяется с аналогичным выходом первого и далее идет к электромотору;
- Фаза В питающего напряжения подключается к среднему контакту первого пускателя, а далее соединяется с крайним правым контактом второго;
- Выход данного контакта от второго пускателя подключается к крайнему правому выходу первого пускателя. Таким образом, фаза В питания занимает место С-фазы;
- C-фаза питания подводится к крайнему правому входному контакту первого пускателя, затем соединяется со средним входным контактом второго пускателя;
- Средний выходной контакт второго пускателя надо соединить со средним выходным контактом второго пускателя, и С-фаза на двигатель поступит вместо В-фазы.
Как правильно установить магнитный пускатель
Корректная схема подключения – главное, но не единственное условие стабильной и безопасной работы оборудования. Необходимо обеспечить правильную эксплуатацию аппаратов.
Реверсивный магнитный пускатель
- Для монтажа магнитных пускателей должны использоваться места с минимальной вибрацией и сотрясениями. Следует учитывать, что большие пусковые токи вызывают вибрацию электромоторов;
- Для исключения ложного срабатывания термореле необходимо устанавливать электроаппараты вдали от источников сильного нагрева;
- Монтаж производится на вертикальном основании, которое должно быть ровным и не допускать смещений в разные стороны;
- Зачищенным концам подсоединяемого проводника придается кольцевая форма, так как в противном случае зажимные шайбы смогут перекоситься.
Важно! Накануне первого пуска производится тщательная проверка самого магнитного пускателя, свободы перемещения его подвижных элементов. Смазка подвижных компонентов, как и контактов, не разрешается.
Возможные дефекты магнитных пускателей и их причины:
- Сильный нагрев аппарата. Причинами могут быть межвитковое замыкание в катушке (в этом случае она подлежит замене), повышенное напряжение, нарушение плотного соприкосновения контактов;
- Гудение. Происходит, когда якорь прилегает не плотно. Причины кроются в попадании грязи, пониженном сетевом напряжении, нарушении подвижности компонентов.
Периодические осмотры и обнаружение дефектов являются гарантией, что не произойдет серьезных поломок, которые отразятся на работе подсоединяемого оборудования. Для этого производятся своевременная чистка аппаратов, регулирование контактов, проверка состояния катушки и якоря, измерение сопротивления изоляции.
Видео
Реверсивная схема подключения магнитного пускателя
Электродвигатели используются в подавляющем большинстве для приводных механизмов и самостоятельных агрегатов. Когда требуется изменение направления вращения его вала, для пуска применяют реверсивный пускатель, схема подключения которого является объектом изучения профессионалов и простых обывателей.
Как устроен и для чего нужен пускатель?
Как можно логически определить из названия, это устройство предназначено для пуска электродвигателей различных приводных механизмов и техники. Это специфическое оборудование, которое необходимо для коммутации силовых целей с большими нагрузками, как на постоянном, так и на переменном токе. Пускатель обладает более широким функционалом, нежели базовый контактор и кроме обеспечения частых пусков и остановок, может выступать в роли защитного барьера при перегрузках. Кроме этого, реверсивный и нереверсивный пускатели, например, серии ПМЛ, нашел свое применение при организации дистанционных схем управления, пуска насосных, вентиляционных, крановых агрегатов, кондиционеров и т.д.
Любой магнитный пускатель состоит из следующих основных частей:
- Электромагнитная часть. Она состоит из катушки и разъединенных магнитопроводов – неподвижного сердечника и подвижного якоря,
- Блок главных контактов. Они нужны для замыкания/размыкания силовых мощных нагрузок. С учетом параметров пускателя, он может иметь до 5 пар контактов. Одна их половина расположена на траверсе якоря, а другая – на верхней части корпуса,
- Блокирующие контакты. Они используются при коммутации управляющих цепей схемы, например, когда включение/остановка происходит пусковыми кнопками. Происходит блокировка основных контактов, а значит, устраняется необходимость удерживания кнопки управления,
- Возвратный механизм. По сути, это просто пружина, которая при размыкании контактов возвращает якорь в исходное положение, обеспечивая необходимый зазор между парами.
Разница между прямым и реверсивным пускателями
Главное отличие нереверсивного и реверсивного пусковых устройств, состоит в схеме подключения. Также меняется комплектация. Контактор прямого типа является одиночным, тогда как реверсивный – блочным, состоящим из двух прямых, объединенных в одном корпусе. Визуальные отличия этих двух реле можно видеть на сравнении моделей ПМЛ-1100 (слева) и ПМЛ-1500 (справа):
При этом, должно соблюдаться одно крайне важное условие: реверсивное соединение пускателей должно полностью исключать возможность их одновременного срабатывания. Это неизбежно приведет к возникновению явления короткого замыкания.
Схема подключения реверсивного магнитного пускателя электродвигателей делится на два основных вида:
- Подключение к сети с напряжением 220 В,
- Запуск контактора на 380 В.
Далее рассмотрим подробнее каждый из вариантов, опираясь на уже упомянутые модели контакторов ПМЛ серии 1500.
Вид и функционирование реверсивной схемы на 220 В
На этой монтажной схеме можно видеть следующие основные элементы (обозначены цифрами):
- Блокирующие или блок-контакты,
- Катушки магнитных пускателей, рассчитанные на напряжение питания 220 В,
- Контакты тепловой или токовой защиты (релейные элементы),
- Силовые контакты пускателей.
Вид реверсивной схемы на 220 В
Кроме этого, буквенно-числовыми обозначениями выделяются:
- МП-1, МП-2 – магнитные пускатели. Их границы на схеме выделены штриховыми линиями,
- Стоп, Пуск – органы управления (сам блок выделен штриховой линией). Отдельно выделена лишь кнопка Стоп. Пусковые кнопки (прямой ход и реверс) обозначены, как две пары контактов, связанных с пускателями МП-1 и МП-2,
- М – электродвигатель.
Принцип функционирования
Как можно видеть, на силовые контакты пускателей подводятся три разноименные фазы от сети 380 В. На приведенной схеме обозначения нет никакого, но в других случаях можно встретить символы А, В, С или L1, L2, L3. Организовывается блочная связка путем прямой перемычки центральных фаз реле, а также диагональных перемычек боковых фаз (условно 1 фаза МП-1 соединяется с 3 фазой МП-2 и т.д).
После этого провода идут на электродвигатель М. На этом промежутке, в разрыв цепи подключается тепловое реле. Оно осуществляет контроль двух из трех фаз, чтобы при перегрузке отключить питание двигателя.
Блок управления с пусковыми кнопками подключается от одной из центральных фаз в разрыв теплового реле, и нулевого провода (заземления) от катушек пускателей ПМЛ. Защита от одновременного включения пускателей организовывается путем перекрестного соединения контактов кнопок пуска/реверса с блокирующими контактами противоположного контактора.
При включении с блока управления прямого хода, замыкаются контакты на первый пускатель, который запускает двигатель. Одновременно, контакты второго пускателя размыкаются, а на катушку не поступает должное напряжение.
Включение реверса происходит после остановки двигателя кнопкой Стоп с последующим нажатием обратного хода. Таким образом, мы имеем на катушках измененные местами боковые фазы, что приводит к вращению двигателя в обратную сторону. Блокирование первого пускателя происходит по аналогичному принципу.
Вид и функционирование реверсивной схемы на 380 В
Здесь мы имеем, фактически, все те же элементы, что используются для ПМЛ на 220 В, но катушки пускателей рассчитаны на более высокое напряжение (имеют больше витков). Кроме того, отличием от предыдущей схемы является подключение блока управления не через одну, а через две фазы, не используя общий ноль.
Вид реверсивной схемы на 380 В
Где еще используются реверсивные пускатели?
Область применения двойных пусковых реле довольно широка. Она не ограничивается одними только электродвигателями. Необходимость изменения направления вращения или перемещения приводных механизмов может возникнуть также в других случаях.
К примеру, каждый человек имеет дома систему водоснабжения, отопления, где всегда есть место различной запорной арматуре. Для промышленных масштабов, при больших расходах, диаметрах трубопроводов, большой точности контроля расхода, обычными кранами не обойтись. Здесь используются задвижки электрической, а также механической системой управления рабочим органом. Вращение диска или перемещение задвижки происходит в разных направлениях, а значит, применение реверсивных схем пуска обосновано.
Не удаляясь далеко, можно найти реверсивные пускатели типа ПМЛ или другие в подъемной системе лифтов. Движение вверх-вниз происходит за счет изменения направления вращения главного барабана.
Изменение направления вращения двигателя, связанных с ним исполнительных механизмов – довольно востребованная процедура. При этом питание от трехфазной сети происходит через промежуточное коммутирующее реле – реверсивный магнитный пускатель типа ПМЛ 1500 или любой другой.