Мощность трехфазного двигателя
Расчет мощности трехфазного тока
В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P. Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3UфIф cosфи =3UфI cosфи . При соединении в треугольник P=3UфIфcosфи=3UIф cosфи . На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/3, а во второе …
В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P.
Мощность трехфазного тока равна тройной мощности одной фазы.
При соединении в звезду PY=3UфIф cos =3UфI cos .
При соединении в треугольник P=3UфIф cos =3UIф cos .
На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/3, а во второе Iф=I/3, получим общую формулу P=3UI cos .
1. Какую мощность P1 берет из сети трехфазный асинхронный двигатель, показанный на рис. 1 и 2, при соединении в звезду и треугольник, если линейное напряжение U=380 В, а линейный ток I=20 А при cos =0,7?
Вольтметр и амперметр показывают линейные значения, действующие значения.
Мощность двигателя по общей формуле будет:
P1=3UI cos =3380200,7=9203 Вт=9,2 кВт.
Если подсчитать мощность через фазные значения тока и напряжения, то при соединении в звезду фазный ток равен Iф=I=20 А, а фазное напряжение Uф=U/3=380/3,
P1=3UфIф cos =3U/3I cos =3380/3200,7;
P1=3380/1,73200,7=9225 Вт 9,2 кВт.
При соединении в треугольник фазное напряжение Uф=U, а фазный ток Iф=I/3=20/3; таким образом,
P1=3UфIф cos =3UI/3 cos ;
P1=338020/1,730,7=9225 Вт 9,2 кВт.
2. В четырехпроводную сеть трехфазного тока между линейными и нулевым проводами включены лампы, а к трем линейным проводам подключается двигатель Д, как показано на рис. 3.
На каждую фазу включены 100 ламп по 40 Вт каждая и 10 двигателей мощностью по 5 кВт. Какие активную и полную мощности должен отдавать генератор Г при sin=0,8? Каковы токи фазный, линейный и в нулевом проводе генератора при линейном напряжении U=380 В?
Общая мощность ламп Pл=310040 Вт =12000 Вт =12 кВт.
Лампы находятся под фазным напряжением Uф=U/3=380/1,73=220 В.
Общая мощность трехфазных двигателей Pд=105 кВт =50 кВт.
10.12.2016
Без рубрики
Нет комментариев
Асинхронный двигатель трехфазного тока
Широкое распространение в различных отраслях народного хозяйства получили асинхронные двигатели трехфазного тока с короткозамкнутым ротором. Они не имеют скользящих контактов, просты по устройству и обслуживанию Двигатель с короткозамкнутым ротором в разобранном виде показан на рис. 1. Основными его частями являются статор и ротор. Сердечники статора и ротора набирают из листов электротехнической стали.
В пазах сердечника статора укладывают и закрепляют трехфазную обмотку В зависимости от напряжения питающей сети и данных двигателя ее соединяют звездой или треугольником. Выводы обмоток статора маркируют, благодаря этому облегчается сборка нужной схемы соединения.
В соответствии с ГОСТ 183—74* приняты следющие обозначения выводов обмоток отдельных фаз соответственно начало и конец первой фазы С1 и С4, второй — С2 и С5 и третьей — СЗ и С6 (рис 2). Расположение выводов на коробке контактных зажимов двигателя должно удовлетворять требованию простоты соединения обмоток по любой схеме Обмотку ротора от его сердечника не изолируют. Ее вместе с вентиляционными лопатками выполняют литой из алюминия или его сплавов. Стержни обмотки и накоротко замыкающие их кольца образуют так называемую беличью клетку.
Конструктивное выполнение двигателей зависит от способа вентиляции и степени защиты.
Асинхронные короткозамкнутые двигатели единой серии 4А по способу охлаждения и степени защиты персонала от соприкосновения с токоведущими или вращающимися частями, а также самой машины от попадания в нее посторонних тел имеют два исполнения (ГОСТ 14254—80): закрытое обдуваемое (обозначение IP44), защищенное (обозначение IP23).
Двигатели исполнения IP44 имеют аксиальную систему вентиляции. Воздух подается вентилятором и обдувает внешнюю оребренную поверхность станины.
Для двигателей IP23 характерна двусторонняя радиальная система вентиляции, которая осуществляется при помощи вентиляционных лопаток, расположенных на короткозамыкающих кольцах ротора.
Рис. 1 Асинхронный двигатель с короткозамкнутым ротором в разобранном виде
1 — статор, 2 — клеммная коробка, 3 —ротор 4 — подшипниковые щиты, 5 — вентилятор, 6 — кожух вентилятора
Двигатели этой серии имеют следующую структуру обозначений: 4 — порядковый номер серии; А — наименование вида двигателя — асинхронный; А — станина и щиты из алюминия; X — станина из алюминия и чугунные щиты; 56—355 — высота оси вращения; S, L, М — установочные размеры по длине корпуса; А, В — обозначение длины сердечника (первая длина — А, вторая—В); 2, 4, 6, 8, 10, 12 —число полюсов; У — климатическое исполнение двигателей; 3 — категория размещения. Например: 4АА56А2УЗ — электродвигатель серии 4, асинхронный, закрытого исполнения, станина и подшипниковые щиты из алюминия, с высотой оси вращения 56 мм, сердечник первой длины, двухполюсный, для районов умеренного климата, категории размещения 3.
Рис 2 Расположение выводов на щитке двигателя при соединении: а — звездой; б — треугольником
Таблица 1
Номинальная мощность, кВт
Продолжение табл. 1
Номинальная мощность, кВт
Основные технические данные двигателей небольшой мощности серии 4А приведены в табл. 1.
Разработана и выпускается единая серия асинхронных двигателей АИ. Улучшение энергетических, пусковых и виброшумовых характеристик машин этой серии достигается за счет применения новых материалов и конструктивных решений.
Основные технические данные двигателей небольшой мощности серии АИ приведены в табл. 2.
Трехфазный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Частота вращения поля n называется синхронной. Она зависит от частоты fi питающего напряжения и числа пар полюсов р машины:
и при f 1—50 Гц принимает значения: 3000 об/мин (р— ==1), 1500 об/мин (р=2), 1000 об/мин (р=3) и т. д.
Для частоты напряжения сети будем иметь:
Ротор асинхронного двигателя, вращаясь в направлении вращения поля, развивает частоту, несколько меньшую, чем синхронная, называемую асинхронной.
Таблица 2
Номинальная мощность, кВт
Синхронная частота вращения, об/ш 2=2,8 кВт, число пар полюсов р= 1. Так как синхронная частота вращения
(в данном случае она равна 3000 об/мин), то скольжение при номинальной нагрузке составит:
Полная мощность двигателя при номинальной нагрузке SHom = 3l/ном /ном = 3-220-6,1 « 4000 В-А = 4 кВ-А.
Активная мощность, потребляемая двигателем при номинальной нагрузке,
Рхном = 31/ном /ном««Ф,ном = 3-220-6,1-0,86 = 3,44 кВт.
Потери в двигателе при номинальной нагрузке
2ДРиш = Ртш — Р2 = 3,44 — 2,8 = 0,64 кВт.
С использованием данных табл. 1 построены кривые зависимости коэффициента мощности двигателей от их номинальной мощности (рис. 3).
Кривая 1 соответствует синхронной частоте вращения 3000 об/мин, 2 — 1500 об/мин и 3— 1000 об/мин. Из рис. 3 видно, что коэффициент мощности асинхронного двигателя зависит от номинальной мощности и синхронной частоты вращения.
С увеличением мощности при постоянстве синхронной частоты вращения («!=const) уменьшается относительное значение воздушного зазора. Благодаря этому относительная реактивная намагничивающая мощность также уменьшается, а коэффициент мощности возрастает. К такому же результату приводит увеличение синхронной частоты вращения при постоянстве номинальной мощности двигателя. Скоростные машины имеют меньшие габариты, что обусловлено уменьшением вращающего момента, у них существенно уменьшается объем воздушного пространства между сердечниками статора и ротора.
Кривые зависимости удельной намагничивающей мощности двигателей от номинальной при — const показаны на рис. 4, откуда видно, что удельная намагничивающая мощность тем меньше, чем больше номинальная мощность двигателя и выше синхронная частота вращения.
Рис. 3 Кривые зависимости коэффициента мощности от номинальной мощности асинхронных двигателей при различных значениях синхронной частоты вращения:
1 — «1=3000 об/мин; 2-/2,-1500 об/ /мин; 3 — «1 = 1000 об/мин
Рис. 4. Кривые зависимости удельной намагничивающей мощности от номинальной мощности асинхронных двигателей при различных значениях синхронной частоты вращения:
1 — п,«>1000 об/мин; 2— «1-1500 об/мин; 3 — «1=3000 об/мин
Переход от зависимостей, приведенных на рис. 3, к зависимостям на рис. 4 производят с использованием следующих соотношений:
(7)
где Show, Qhom — полная и реактивная мощности двигателя при номинальной нагрузке.
Из сопоставления рис. 3 и 4 нетрудно сделать заключение о влиянии коэффициента мощности на энергетические показатели двигателей и питающей их системы: у двигателей с повышенным коэффициентом мощности при данной номинальной нагрузке (Рг=Рном) реактивная намагничивающая мощность меньше. Это приводит к уменьшению полной мощности и, соответственно, к уменьшению тока, потребляемого из сети.
В результате электрические потери в обмотках машины уменьшаются и ограничивается падение напряжения в проводах системы электроснабжения.
Расчет основных параметров двигателя с шильдика
Электродвигатели встречаются в промышленности и быту повсеместно. Если Вы не обращали внимание, то я приведу парочку фото примеров:
Порой возникает необходимость, рожденная будничным любопытством, либо производственной необходимостью в определении мощности электродвигателя по внешнему виду, или значения допустимой температуры в эксплуатации, не говоря уже о значениях тока и напряжения.
Тут возможен вариант, что с него содрана табличка, на которой написаны номинальные параметры, либо же шильдик в таком состоянии, что различить ничего невозможно. Как же быть в такой ситуации…
Одно дело, если Вы всю жизнь работали на производстве движков, и можете определить мощность на глаз. В иных случаях, определить поможет линейка (рулетка) и таблицы с габаритами механизмов.
Если Ваша деятельность больше лежит в теоретических изысканиях, нежели практических, то пригодится формула определения мощности ЭД или таблицы с номинальным данными, именно про это и не только в этой статье.
Бирка (шильдик) электродвигателя
Осмотрев любой, за редким исключением, электродвигатель можно обнаружить табличку, привинченную на болты, саморезы или же заклепки. Что же написано на данном куске металла? Возьмем шильдик, заменив на нем заводской номер на название сайта.
Кстати, редко бывает, что табличка на электрооборудование находится в таком, почти идеальном состоянии. Часто данные выцветают или замазаны краской, ведь задача стоит для обслуживающего персонала покрасить двигатель, а не покрасить двигатель, оставив табличку нетронутой. Но, нам повезло. Пойдем по-порядку.
Первая строчка — число фаз и тип тока (3
), заводской номер, частота сети, форма исполнения и монтажа, класс изоляции
Вторая строчка — тип электродвигателя, косинус фи, возможные схемы соединения, номинальная частота вращения
Третья строчка — возможные номинальные напряжения, номинальная мощность, IP — степень защиты электродвигателя, масса, режим работы электродвигателя (S1).
Четвертая строчка — номинальные токи в зависимости от схемы включения обмоток, далее какому госту соответствует эд.
Рассмотрим отдельные параметры более подробно.
Мощность электродвигателя: полная, активная и на валу
Формула для расчета мощности трехфазного асинхронного двигателя:
S1 — полная мощность, потребляемая двигателем из сети
P1 — активная мощность, потребляемая электродвигателем из сети (указана на шильдике)
P — активная мощность на валу ЭД.
cosf — косинус фи, коэффициент мощности — угол сдвига фаз между активной (P) и полной мощностью (S).
В формулах выше, значение мощности получится в Вт, значение полной мощности в ВА. Чтобы перевести в киловатты необходимо получившееся значение разделить на тысячу. Значение тока и напряжения соответственно в формуле выше в амперах и вольтах.
I1 и U1 — линейные значения тока и напряжения, их еще называют междуфазными. Не стоит путать с фазными. Линейные — это АВ, ВС, СА (380); фазные — АО, ВО, СО (220). Если выразить формулы мощностей через фазные значения тока и напряжения, то вместо корня из трех вначале будет коэффициент 3. Этот коэффициент определяется наглядно через векторную диаграмму трехфазного напряжения.
Для двигателей постоянного тока формула будет просто произведение напряжения на зажимах двигателя умножить на ток, потребляемые двигателем из сети.
Потребляемая мощность p1 больше мощности на валу ЭД из-за потерь, которые возникают при преобразовании электрической энергии в механическую.
Звезда/Треугольник и 220/380, 380/660
Смотреть все значения по порядку как они идут через дробь. То есть написано на шильде Y/D ( треугольник/звезда), значит и токи, напряжения соответственно будут сначала для Y, а после дроби для звезды. Единственно, нюанс, что при 220/380 — треугольник будет 220, А при 380/660 — треугольник будет 380. То есть говорить, что 380 — это всегда звезда — неверно.
Всегда изучайте табличку на движке перед подключением.
Достоинства при подключении звездой и треугольником абстрактны, так как каждая схема имеет свои области применения:
- Y — меньше рабочий и пусковой ток, больше напряжение, меньше пусковой момент, меньше греется
- D — больше пусковой момент, пусковой ток, но и больше греется.
Бывают двухскоростные двигатели, где сначала запускаются на звезде, А потом переходят на треугольник. В таком случае механизм легче запускается, А потом работает с большей мощностью.
При подключении трехфазного двигателя на 220В, где есть лишь фаза и ноль, можно прибегнуть к схеме с конденсаторами.
Форма исполнения и способ монтажа
IM 1081 — форма исполнения и способ монтажа согласно ГОСТ 2479 и МЭК60034-5. В нашем примере это обозначает “на лапах с двумя подшипниковыми щитами, с одним циллиндрическим концом вала”.
Это название состоит из латинских букв IM и четырех чисел.
Первая цифра от 1 до 9 — конструктивный способ исполнения
Вторая и третья (00. 99) — способ монтажа
Четвертая (0..9) — условное обозначение конца вала.
Коэффициент полезного действия электродвигателя
КПД показывает эффективность преобразования электродвигателем электрической энергии, которую он берет из сети, в механическую энергию вращения механизма.
Если бы не было потерь при передаче энергии, то КПД равнялся бы 100%. Однако, такого не существует. Однако, существуют виды потерь, которые уменьшают величину коэффициента:
- потери от нагрева проводников с током при увеличении нагрузки — электрические потери
- потери на вихревые токи, гистерезис в шихтованных статорах — магнитные потери
- потери на трение подшипников, вентиляцию — механические потери
- плюс различные дополнительные менее важные виды потерь.
Часто, но не всегда, чем выше скорость вращения электродвигателя, тем больше его КПД. Это связано с зависимостью КПД и скольжения ЭД. Существуют классы согласно величины КПД по ГОСТ IEC/TS 60034-31—2015: IE1, IE2, IE3, IE4.
Классы изоляции двигателей по нагревостойкости
Здесь нам на помощь придет ГОСТ 8865-93. Класс изоляции электрических машин характеризует максимальную температуру при номинальных параметрах. То есть в нашем примере при номинальных данных с таблички, температура изоляции не должна превышать 155 градусов.
Приведу данные допустимых температур электродвигателей для разных классов изоляции. Следует учитывать, что материалы могут иметь различные классы.
- Y — 90
- A — 105
- E — 120
- B — 130
- F — 155
- H — 180
Далее идут цифровые классы: 200, 220, 250 — а после них плюс 25 градусов с обозначением класса согласно допустимого значения температуры.
Данные температуры определены опытным путем при работе на номинальных параметрах на протяжении срока эксплуатации до величин, при которых увеличивается тангенс дельта и уменьшается напряжение пробоя.
Сохраните в закладки или поделитесь с друзьями
Как определить мощность электродвигателя без бирки
Если техническая документация к двигателю утеряна, а надписи на корпусе стерлись или не читаемы, возникает вопрос: как определить мощность электродвигателя без бирки? Существуют несколько методов, о которых мы вам расскажем, и вам останется выбрать из них наиболее удобный в вашем случае.
Практические измерения
Самый доступный способ – проверка показаний бытового счетчика электроэнергии. Сначала следует отключить абсолютно все бытовые приборы и выключить свет во всех помещениях, поскольку даже горящая лампочка на 40Вт будет искажать показания. Проследите, чтобы счетчик не крутился или индикатор не мигал (в зависимости от его модели). Вам повезло, если у вас счетчик «Меркурий» — он показывает величину нагрузки в кВт, поэтому от вас потребуется только включить двигатель на 5 минут на полную мощность и проверить показания.
Индукционные счетчики ведут учет в кВт/ч. Запишите показания до включения мотора, дайте ему поработать ровно 10 минут (лучше воспользоваться секундомером). Снимите новые показания счетчика и путем вычитания узнайте разницу. Умножьте эту цифру на 6. Полученный результат отображает мощность двигателя в кВт.
Если двигатель маломощный, вычислить параметры будет несколько сложнее. Выясните, сколько оборотов (или импульсов) равно 1кВт/ч – информацию вы найдете на счетчике. Допустим, это 1600 оборотов (или вспышек индикатора). Если при работающем двигателе счетчик делает 20 оборотов в минуту, умножьте эту цифру на 60 (количество минут в часу). Получается 1200 оборотов в час. Разделите 1600 на 1200 (1.3) – это и есть мощность двигателя. Результат тем точнее, чем дольше вы измеряете показания, но небольшая погрешность все равно присутствует.
Определение по таблицам
Как узнать мощность электродвигателя по диаметру вала и другим показателям? В интернете нетрудно найти технические таблицы, с помощью которых можно узнать тип мотора и, соответственно, его мощность. Вам потребуется снять следующие параметры:
- диаметр вала;
- частота его вращения или число полюсов;
- крепежные размеры;
- диаметр фланца (если двигатель фланцевый);
- высота до центра вала;
- длина мотора (без выступающей части вала);
- расстояние до оси.
Далее – вопрос времени и внимательности. Согласитесь, надежнее измерить детали и узнать точный, без погрешностей результат. В сети есть параметры абсолютно всех, даже очень старых моторов.
Вычисление по количеству оборотов в минуту
Определите визуально количество обмоток статора. Используйте тестер или миллиамперметр для того чтобы узнать число полюсов – при этом не требуется разбирать мотор. Подключите прибор к одной из обмоток и равномерно вращайте вал. Количество отклонений стрелки – это число полюсов. Учтите, что частота вращения вала при данном методе вычисления несколько ниже полученного результата.
Определение по габаритам
Еще один способ – проведение замеров и вычислений. Многие из тех, кто интересуется, как узнать мощность трехфазного двигателя, предпочитают именно его. Вам понадобятся следующие данные:
- Диаметр сердечника в сантиметрах (D). Он измеряется по внутренней части статора. Также необходима длина сердечника с учетом отверстий вентиляции.
- Частота валового вращения (n) и частота сети (f).
Через них вычислите показатель полюсного деления. D умножьте на n и на число Пи – назовем это показание А. 120 умножьте на f – это В. Разделите А на В.
Как видите, чтобы подсчитать значение, достаточно вспомнить школьный курс математики.
Определение по мощности, выдаваемой двигателем
Здесь опять придется вооружиться калькулятором. Узнайте:
- число оборотов вала в секунду (А);
- показатель тяглового усилия мотора (В);
- радиус вала (С) – это можно сделать с помощью штангенциркуля.
Определение мощности электродвигателя в Вт осуществляется по следующей формуле: Ах6.28хВхС.
Для чего необходимо знать мощность двигателя
Из всех технических характеристик электродвигателя (КПД, номинальный рабочий ток, частота вращения и т.д.) самая значимая – мощность. Зная главные данные, вы сможете:
- Подобрать подходящие по номиналам тепловое реле и автомат.
- Определить пропускную способность и сечение электрических кабелей для подключения агрегата.
- Эксплуатировать двигатель согласно его параметрам, не допуская перегрузок.
Мы описали, как замерить мощность электродвигателя разными способами. Используйте тот, который в вашем случае будет оптимальным. Применяя любой из методов, вы подберете агрегат, который будет лучшим образом отвечать вашим требованиям. Но самый эффективный вариант, экономящий ваше время и избавляющий вас от необходимости искать информацию и проводить замеры и расчеты – это сохранить технический паспорт в надежном месте и следить за тем, чтобы шильдик с данными не потерялся.
Как определить мощность электродвигателя с биркой и без неё — обзор методик
Сначала смотрим на бирку
Самым простым является способ определения мощности двигателя по шильдику (его еще называют табличкой или биркой). В первую очередь, стоит помнить, что число, указанное на бирке – это механическая мощность на валу, т.н. Р2. Чтобы найти активную электрическую Р1 (которую будет учитывать ваш счетчик), её нужно разделить на КПД (η), а, чтобы найти полную S, то еще разделить и на COSф, их найдете на том же шильдике.
Р1 = Р2/η = 180/0,68 = 265 (Вт)
S = P1/cosФ = 265/0.78 = 340 (Вт)
А если указан только ток — вы можете определить полную мощность по стандартной для трёхфазных цепей формуле:
Если по примеру приведенного выше шильдика, то:
S = 380*0,52*1,73 = 341 (ВА)
P1 = S*cosФ = 341*0,78 = 266 (Вт)
И механическая Р2 на валу:
P2 = P1*η = 180,8 (Вт)
Как вы могли убедится, результаты расчетов по току и напряжению совпали с указанными на табличке цифрами. По шильдику вы можете определить и другие параметры электродвигателя, такие как номинальное напряжение, силу тока, число оборотов в минуту.
Сравниваем габаритные размеры
Если нет таблички или на ней сложно что-то прочитать, то можно определить мощность асинхронного электродвигателя без паспорта по габаритам, а именно по диаметру вала.
Этот способ определения используют на практике чаще остальных, поскольку нужно только измерить вал штангенциркулем и не нужно подключение к сети. После измерения диаметра, полученные значения сравнивают с таблицей и определяют приблизительную мощность. Такой способ позволяет получить достаточно точные характеристики без бирки. Таблица для этого приведена ниже.
Такой способ определения мощности электродвигателя по габаритам (по ротору) подходит как для трёхфазных, так и однофазных асинхронных двигателей. Обратите внимание «P» указана в кВт (киловатты), как принято в электротехнике, а не как в физике — в ваттах.
Если вам по каким-то причинам не подходят данные из этой таблицы, то есть другой способ узнать мощность электродвигателя по габаритным размерам, нужно измерить:
- диаметр вала;
- частоту его вращения (число пар полюсов);
- крепежные размеры;
- диаметр фланца или ширину крепежных лап;
- высота до центра вала;
- длина мотора (без выступающей части вала).
И сравнить эти данные с размерами электромашин единой серии 4А, АИР, А, АО. Их можно найти в разных справочниках или каталогах компаний, которые их производят.
Чтобы определить мощность двигателя распространенной серии АИР по крепежным отверстиям на лапах, воспользуйтесь этой таблицей.
Для определения мощности электродвигателя по диаметру фланца (D20) и диаметру крепежных отверстий фланца (D22) используйте следующие данные:
Со временем и практикой вы научитесь приблизительно определять мощность двигателя по внешнему виду, мысленно сравнивая с теми, которыми сталкивались раньше, но для этого нужно знать ряд стандартных номиналов электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт.
Оценочный расчёт по току холостого хода и напряжению
Определить мощность электродвигателя можно и по току или, как говорят дилетанты, «по амперажу». Но измерять ток, когда машина находится под нагрузкой, чтобы узнать его номинальную мощность неправильно, потому что вы никак не можете знать работает он под номинальной нагрузкой, в перегрузе или наоборот недогружен. От нагрузки зависит ток статора. Это значит, что вы измерите не номинальный ток, а ток потребления в этот момент.
Итак, нужно измерить ток холостого хода, то есть когда двигатель работает без нагрузки. Прежде чем вы будете измерять что-либо, для получения правильных данных нужно чтобы он какое-то время поработал, а именно 0,5-1 час для двигателей мощностью до 100 кВт и 1-2 часа — свыше 100 кВт. После измерения, по таблице узнать типовые отклонения Iхх от Iном в процентах и посчитать предполагаемый Iном.
Давайте приведем пример, допустим, вы измерили ток, оказалось, что это 5 Ампер. Оцениваем мощность двигателя «на глаз», допустим, что он довольно крупный, и вы предполагаете, что она больше 5 кВт. При этом это «трёхтысячник», то есть его вал вращается с частотой 3000 об/мин. Тогда измеренный ток холостого хода составляет 40% (или 0,4) от номинального. Чтобы узнать номинальный ток, нужно разделить Iхх на проценты из таблицы:
Тогда полную и активную мощность можно определить по формулам:
S=UI*1,73=380*12,5*1,73=8217 Вт=8,2 кВт.
Примем, что cosФ двигателя равен 0,85, а его КПД 0.8, тогда активная P1 равна:
Р = Iср*Uср*1,73*cosf*КПД=12,5*380*1,73*0,85*0,8=5,5 кВт
Правда стандартных асинхронных трёхфазных двигателей с такими параметрами не бывает, числа были взяты лишь для примера, но приведенным выше способом вы можете узнать мощность двигателя, зная ток и напряжение.
Расчет по частоте вращения и крутящему моменту
Чтобы подобрать двигатель для конкретного механизма вы можете определить мощность двигателя по крутящему моменту и количеству оборотов, которые требуются на валу. Для этого используют формулу:
где M – момент, n – число оборотов, 9550 – коэффициент.
Заключение
Мы рассмотрели основные способы определения мощности электродвигателя. Есть и другие методы, например, по сопротивлению обмоток, но он не может быть точным, так как после перемотки оно может не соответствовать паспортным данным. Да и чтобы точно измерить сопротивление обмоток статора мощных двигателей нужны точные измерительные приборы, так называемый измерительный мост, или производить замеры методом вольтметра-амперметра. Чего делать на практике никто не будет, а мультиметром точно сделать такие замеры не получится.
Способ определения параметров электродвигателя по весу также нельзя называть точным, он заключается в том, что, в среднем, вес асинхронного электродвигателя равняется:
- для 3000 об/мин — 7-9 кг на 1 кВт;
- для 1500 об/мин — 11-13 кг/кВт;
- Для 1000 об/мин — 14-15 кг/кВт.
Но точным его назвать совсем нельзя, корпуса современных электродвигателей выполняются из алюминия и легче до 30%, по сравнению со старыми советскими, тогда как защищенный электродвигатель будет весить больше своего незащищенного аналога. Поэтому такой метод, хоть и имеет право на жизнь, но больше похож на гадания на кофейной гуще.
Пожалуй, самое простое определение мощности электродвигателя — по размерам, диаметру вала и т.д. с последующим сравнением с каталожными данными двигателей такой же серии.
Как рассчитать мощность электродвигателя
- Расчёты основных параметров асинхронного электродвигателя
- Как определить мощность электродвигателя?
- Какие бывают виды регуляторов?
- Регулятор на переменном резисторе
- Электронный регулятор
- Заключение
Как выполнить расчёт потребляемой мощности асинхронного электродвигателя из сети, если по шильдикам можно узнать только номинальную мощность? Для этого необходимо:
- обратить внимание на остальные показатели – это η и cosφ (КПД и коэффициент мощности);
- учесть связь динамических характеристик вала и КПД.
По имеющимся данным, можно рассчитать затраченную мощность электроэнергии:
Pз=Р/η.
Но нужно помнить, что потребляемая энергия электрическими приборами включает в себя как активную, так и реактивную компоненту.
Расчёты основных параметров асинхронного электродвигателя
Активная мощность тратится на выполнение полезной работы и создание тепла. Обозначается буквой «P», измеряется в W и вычисляется:
P=I*U*cosφ.
Реактивная мощность создаётся колебаниями энергии электрического поля. Она обуславливает способность деталей реактивной машины сохранять и излучать электромагнитную энергию. Речь идёт о токе, который заряжает конденсатор или создает магнитное поле вокруг витков обмотки катушки. Обозначается буквой «Q», измеряется в Var и рассчитывается:
Q=I*U*sinφ.
Полная мощность «S» представляется математической комбинацией по формуле теоремы Пифагора: S*S = Q*Q + P*P. Она измеряется в V*A и вычисляется:
S = P / cosφ = √(P 2 + Q 2 )=I*U.
Реактивную мощность трехфазного асинхронного двигателя можно представить суммой двух составляющих: индуктивной и емкостной.
Лучшее представление данной величины может быть получено в виде векторной диаграммы, индуктивная составляющая – это положительная координата на оси Y, емкостная – отрицательная. Очевидно, что эти два значения несколько компенсируют друг друга, составляя координату вектора, которая будет либо положительной, либо отрицательной. Чем меньше угол между ними, тем полная мощность становится ближе к активной.
Коэффициент мощности cosφ для трёхфазного асинхронного двигателя равен 0,8–0,9. Если его необходимо увеличить, то довольно часто добавляют конденсаторы в цепи двигателя. Функция этих конденсаторов заключается в том, чтобы обеспечить намагничивающий ток, снижающий амплитуду реактивной составляющей. Чем выше cosφ, тем меньше электромашина потребляет энергии.
Как определить мощность электродвигателя?
Для того чтобы выполнить расчёт понадобятся измерительные инструменты и справочная информация. Итак, существуют варианты определения мощности электродвигателя:
- по току. Подаём питание на асинхронный электродвигатель. Поочередно делаем замеры тока в каждой обвивке амперметром. В итоге среднее значение тока умножается на напряжение и получается потребляемая мощность электродвигателя;
- по размерам. Замеряем диаметр и длину сердечника статора. Узнаем частоту оборотов вала. Далее, производим приближённый расчёт «постоянной» по формуле:
3,14•D•n/(120•f).
На основе расчёта находим в справочнике константу. Вычисляем
P = C•D²•l•n•10^(-6);
- по тяговой силе. Измеряем скорость оборотов вала с помощью тахометра, радиус вала обычной линейкой, тяговое усилие движка динамометром. Для расчёта все найденные значения перемножаем
P =M•w= F•2•3,14•n•r.
На основе этих математических выражений можно сделать вывод, что асинхронные двигатели могут иметь одинаковую мощность, но различаться по частоте вращения вала, что существенно влияет на его габариты. Рассмотрим также смысл использования регуляторов мощности.
Какие бывают виды регуляторов?
Существует два вида регуляторов, доступных на сегодняшнем рынке:
- на переменном резисторе,
- электронный (шаговый и подвижный).
Все они обладают разными способами управления скоростью вращения и, посему, эффективность (потребление электроэнергии) у каждого вида отличается. С этой точки зрения, классический регулятор – самый дешевый, но неэффективный. Давайте рассмотрим все три типа.
Регулятор на переменном резисторе
На самом деле этот реостат имеет внутри огромную катушку. Выбирая низкие параметры скорости, мы, по сути, выбираем более высокое сопротивление цепи. Это приводит к снижению потребляемого тока (так как напряжение является фиксированной величиной). Аппараты громоздкие по размеру и недорогие по цене.
Электронный регулятор
Электронные – это новейшие типы из доступных регуляторов на рынке. Они намного меньше по размерам, чем другие. Для понижения напряжения в них используются вместо резисторов конденсаторы, которые регулируя скорость вращения, управляют сигналом электропитания. В отличие от реостатов не нагреваются и, значит, экономят электроэнергию, когда мотор работает на малых скоростях.
Регуляторы способны сэкономить до 40% на «1» скорости и около 30% на «2-й» скорости по сравнению со своими резисторными аналогами. Существуют электронные разновидности регуляторов:
- подвижные с плавным регулированием.
- шаговые с пронумерованной скоростью действия (обычно от 1 до 5).
Эти устройства обеспечивают низкий уровень искажений движения мотора и, следовательно, меньше нагреваются. Вариант с лучшей технологией и экономией электричества.
Заключение
Мощность асинхронного двигателя – основная техническая характеристика этого устройства, которая влияет на сферу применения и выполняемые задачи. Для регулирования соотношения физических величин используются регуляторы. Формулы, выражающие связь физических показателей асинхронных двигателей необязательно помнить все, их можно легко выводить самим из тех, что знакомы по школьной программе физики.
Как узнать мощность электродвигателя?
Чаще всего мощность двигателя обозначена в техническом паспорте к устройству и продублирована на корпусе, где есть специальная наклейка или планка с основными техническими параметрами.
Однако нередко случается, что данные на корпусе являются не читаемыми, а технический паспорт давно утерян.
Как же в таком случае выяснить параметры мощности электромотора?
Определение по счетчику:
При отсутствии маркировки на корпусе электромотора можно вычислить его мощность несколькими способами. Самым простым методом является вычисление по счетчику электричества: потребуется отсоединить от этого прибора все прочие устройства, подключить электродвигатель и запустить его под нагрузкой на 5-7 минут. Большинство современных счетчиков выдает показатель нагрузки в киловаттах, и полученный показатель и будет исковым результатом.
Вычисление по таблицам:
Другим способом определения мощности мотора является расчет по данным из таблиц. Для этого понадобится измерить диаметр вала, длину мотора без учета выступающей части вала, а также расстояние до оси. По этим параметрам можно выяснить, к какой серии относится данный мотор, и найти его технические характеристики, в том числе мощность. В сети можно отыскать технические таблицы по двигателям постоянного и переменного тока, где по найденному значению легко отыскать тип устройства и его мощность.
Вычисление по габаритам:
По данному способу необходимо провести следующие действия:
- Измерить диаметр сердечника в статоре по внутренней части, а также длину с учетом отверстий вентиляции. Значение выражается в сантиметрах.
- Вычислить частоту сети, к которой подключен электродвигатель, и синхронную частоту валового вращения.
- Узнать показатель полюсного деления: для этой цели диаметр сердечника умножается на синхронную частоту вращения вала, а найденное значение умножается на 3,14 и делится на частоту сети, умноженное на 120.
Формула вычисления постоянного полюсного значения:
- Найти число полюсов, перемножив частоту тока на 60 и разделив на частоту валового вращения.
- Найденное число умножить на 2, после чего обратиться к таблице по определению зависимости константы от числа полюсов и выявить соответствующий показатель.
- Найденную постоянную величину умножают на квадрат от диаметра сердечника, длину и частоту вращения вала, после чего результат умножается по нижеприведенной формуле:
Найденное значение выражается в кВт.
Вычисление мощности, выдаваемой электродвигателем.
Для вычисления реального показателя мощности, с которой работает электродвигатель, необходимо найти скорость валового вращения, выражаемую в числе оборотов за секунду, тяговое усилие мотора. Частота вращения умножается последовательно на 6,28, показатель силы и радиус вала, который можно вычислить при помощи штангенциркуля. Найденное значение мощности выражается в ваттах.
Определяем потребляемый ток:
Для тех, кому надо знать не только мощность, но и объем потребляемого тока, также есть несколько способов получения таких данных. Для каждого из них важным критерием в процессе определения является количество фаз.
Если у вас однофазная сеть, разделите показатель мощности на значение напряжения.
Если двигатель 3-фазный, схема подсчета еще проще: удвойте значение мощности — это и будет показатель в Амперах.
Как вы убедились, узнать мощность двигателя и потребляемый ток, даже если эти данные утеряны, достаточно просто. Выбирайте самый простой для вас способ решения проблемы и пусть ваша техника всегда работает исправно и имеет высокий КПД!