Kontakt-bak.ru

Контракт Бак ЛТД
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ремонт балласта люминесцентных ламп своими руками

Подключение и ремонт баластника для люминесцентных ламп

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

  1. Разновидности изделия
  2. Запуск и схема подключения
  3. Определяем поломки и производим ремонт

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Устройство электронного балласта для люминесцентных ламп

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

  1. Для чего нужен балласт?
  2. Схемы электронных балластов для люминесцентных ламп
  3. Ремонт ЭПРА
  4. ЭПРА для компактных ЛДС
  5. Люминесцентные лампы T8
  6. Как изготовить светильник своими руками?

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Лампы накаливания

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.

Люминесцентная лампа, С1 и С2 – конденсаторы Электрическая схема ЭПРА

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.

Фото внутреннего устройства ЭПРА Фото типового устройства ЭПРА

Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.
Читать еще:  Скрытая и наружная ретро проводка в деревянном доме

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Лампа OSRAM с цоколем E27

Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Простейший светильник из двух ламп

Ремонт электронного балласта

Один, транзистор горит редко. Обычно, второй, так же, оказывается подпаленным и (или) пробиты (оборваны) диоды (когда один, а когда и все 4) выпрямителя.
Заодно, пробой транзистора тянет перегорание резисторов в базовой и (если стоят) в эммитерной цепи транзисторов.

В общем, ремонт ЭПРА, в первую очередь, заключается в проверке исправности ВСЕХ его элементов. Благо, их там не много и все «звонятся» без выпаивания.

Такого, как у Вас, транзистора я тоже не знаю.
Но, как правило, используются типа MJE13001(3, 5) или подобные.
Указанные транзисторы достаточно распространены, по этому, если возьмёте их, то не ошибётесь. Рекомендую менять сразу пару.
Даташиты на эти транзисторы легко отыскиваются в сети.
По этому, определиться будет не сложно.

При мощности Вашей ЛДС в 15Вт, вполне достаточно MJE13001. При правильной настройке инвертора, они даже греться не должны.
Можете поставить с запасом — MJE13003.

Остаётся вопрос, почему сгорел Ваш ЭПРА?
Если причины неочевидны (взял, и сгорел), то нужно приянть меры — обязательно поставить резистор, примерно, на 10Ом на входе ЭПРА. То есть, питание 220В подавать на на ЭПРА через этот резистор.

Ну, и раз залезли в схему, то грех не усовершенствовать её, увеличив ёмкость электролитического конденсатора фильтра до 10мкФ, и установив либо позистор параллельно ЛДС, либо термистор на 100-700Ом последовательно с резонансным конденсатором контура.

Очень полезно замерить режимы работы ЛДС, осциллограммы её тока и напряжения, а так же, токи транзисторов.

После этого, у Вашего ЭПРА появится шанс работать, как минимум, до расходования ресурса ЛДС.

Большое Вам спасибо за такой детальный и доступный для моего понимания ответ.
В суботу ждет радиобазар, а позже отпишу что получилось.

Еще раз спасибо.

vistv, судя по фото — ЭПРА «знакомый».
Всё, что я рекомендовал, к нему относится в полной мере.
Только меня смущает поплывшая изоляционная лента на дросселе, что говорит о его сильном нагреве.
Как бы там межвиткового не было.
Стоит проверить до включения после ремонта.

Теперь моя очередь
В субботу, наконец-то, дошли руки до лампы. Еще раз проверил спирали. ОБРЫВ Одна из спиралей в непосотянном обрыве: то звонится, то нет. Отсюда вопрос: можно ли что-нибудь сделать? Раньше, помню, ЛДС запускали с помощью умножителя напряжения. Может что-то можно сделать с ЭПРА?

Если запуск основан на резонансе напряжений, то можно Просто замыкаете обе спирали — и все!

Не понял. А транзисторы от этого не выгорят? Получается, что на выходе резонансный контур — и все?

Естественно, если обе спирали закоротить, то получится бомба замедленного действия.
Стоит ЛДС случайно не зажечься в течение пары секунд, и транзисторы постреляют.

Не стоит заведомо обрекать на гибель исправный ЭПРА.
Лучше его использовать для ремонта другой энергосберегайки или заменить им стандартный дроссель в светильнике с линейными ЛДС.

Ещё можно купить обычную стандартную ЛДС на 5-7-9-11Вт и приклеить вместо перегоревшей трубки. Получится самопальная энергосберегайка. Хотя и довольно корявая, но рабочая. Для помещений, типа «склад» или для коридора — подойдёт.

ChA: А транзисторы от этого не выгорят?
Ну, на этот предмет в нормальном балласте существует токовая защита. Ну и потом — не от хорошей же жизни такой вопрос возник. Правильное решение здесь — купить новую лампу

DWD: Не стоит заведомо обрекать на гибель исправный ЭПРА
Вот и я так думаю. Но лампу хочется зажечь. Наверное попробую поставить в прикроватный светильник — там можно будет тыкать в нее пальцем Если вообще перестанет зажигаться, попробую собрать умножитель. 4 диода и 4 конденсатора в корпус ЭПРА влезут. А плату отправлю в коробку к другим исправным — у меня их сейчас штук пять лежат разной мощности — про знакомого из магазина я писал выше

DWD: Ещё можно купить обычную стандартную ЛДС на 5-7-9-11Вт
Сгоревшвя лампа — 23Вт. И стояла в ванной комнате. Так что ЛДС надо тоже ватт на 20. Вообще, надо будет подумать, может соорудить для ванной комнаты такой светильник.

seybr. Есть несколько ламп 27вт на 110вольт.Пожайлуста подскажите,что можно
придумать? Соеденить две последовательно?Какие будут мысли?

Форум про радио — сайт, посвященный обсуждению электроники, компьютеров и смежных тем.

ЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС

Интересно то, что цена такого балласта недорога, всего 2 доллара. Для некоторых, покажется, что все-таки 2$ за балласт дороговато, но после вскрытия, оказалось, что в нем использованы компоненты в разы дороже общей цены балласта. Одна только пара мощных высоковольтных транзисторов 13009 уже стоят более доллара каждый.

Кстати, срок службы ЛДС зависит от способа запуска лампы. Из графиков видно, что холодный старт резко сокращает срок службы лампы.

Особенно в случае применения упрощенных электронных балластов, которые резко выводят ЛДС в рабочий режим. Да и способ питания лампы постоянным током также снижает срок службы. Незначительно — но всё-таки снижает. Примеры — на схемах ниже:

Простая схема электронного балласта (без микросхемы управления) почти мгновенно зажигает лампу. И для долговечности лампы это плохо. За короткое время нить накала не успевает разогреться, а высокое напряжение, приложенное между ее нитями, вырывает из нити накала требуемое количество электронов, необходимое для зажигания лампы, и этим разрушает накал, понижая его эмиссионную способность. Типовая принципиальная схема электронного балласта:

Поэтому рекомендуется выбирать белее серьёзную схему, с задержкой подачи питания (клик для увеличения):

Читать еще:  Стандарты расположения розеток и выключателей

В схеме купленного балласта особенно порадовал сетевой фильтр — чего нет в электронных трансформаторов для галогенных ламп. Фильтр оказался не простой: дроссель, варистор, предохранитель (не резистор как в ЭТ, а самый настоящий предохранитель), емкости перед и после дросселя. Дальше идет выпрямитель и два электролита — это не похоже на китайцев.

После уже идет стандартная, но в разы улучшенная схема двухтактого преобразователя. Тут сразу на глаза бросаются две вещи — теплоотводы транзисторов и применение более мощных резисторов в силовых цепях, обычно китайцам без разницы, где ток в цепи больше или меньше, они используют стандартные резисторы 0,25вт.

После генератора идут два дросселя, именно благодаря им происходит повышение напряжения, тут тоже все очень аккуратно, никаких претензий. Даже в мощных электронных трансформаторах китайские производители редко используют теплоотводы для транзисторов, но здесь как видим они есть, и не только есть, но и очень аккуратны — транзисторы прикручены через дополнительные изоляторы и через шайбы.

С обратной стороны плата тоже сияет аккуратностью монтажа, никаких острых выводов и испорченных дорожек, олово так-же не пожалели, все очень красиво и качественно.

Подключил устройство — оно отлично работает! Я уже начал думать, что сборку делали немцы, под суровым контролем, но тут вспомнил цену и почти поменял свое мнение о китайских производителях — молодцы парни, поработали на славу! Обзор подготовил АКА КАСЬЯН.

Ремонт люминесцентных ламп своими руками: конструкция, схема

Все больше и больше в эксплуатации у населения становится компактных люминесцентных ламп (КЛЛ), в обиходе называемых энергосберегающими. Но, поскольку рынок наводнен относительно дешевой продукцией низкого качества, некоторые экземпляры не отрабатывают заявленный производителем срок службы. В итоге экономия получается призрачной: затраченные на покупку лампы деньги не оправдывают себя. Даже правильная эксплуатация КЛЛ не дает гарантии, что она прослужит долго.

Иногда поломанная лампа подлежит ремонту. Детали для замены можно взять из другой КЛЛ или купить в магазине радиотоваров. Это окажется дешевле, чем приобретать новую лампу.

  1. Устройство и принцип работы компактных люминесцентных ламп
  2. Внешний осмотр люминесцентной лампы
  3. Диагностика нитей накаливания
  4. Неисправности выпрямителя
  5. Поиск неисправностей в схеме генератора

Устройство и принцип работы компактных люминесцентных ламп

Для успешной починки любого устройства нужно знать его конструкцию и принцип действия. Компактная люминесцентная лампа состоит из частей, указанных на рисунке.

Устройство КЛЛ

  1. Стеклянная трубка с парами ртути и инертным газом внутри.
  2. Люминофор на внутренней поверхности трубки.
  3. Электронный балласт.
  4. Корпус
  5. Цоколь.

По краям трубки расположены электроды, похожие на нити лампы накаливания. В момент запуска через них проходит ток, разогревая материал, которым они покрыты. Свойства покрытия таковы, что при разогреве из него в окружающее пространство начинают эмиссировать свободные электроны.

Затем схема электронного балласта, называемого еще электронным пускорегулирующим аппаратом (ЭПРА), формирует между крайними электродами импульс высокого напряжения. В трубке возникает ток за счет ранее появившихся при разогреве электронов. При движении они бомбардируют атомы инертного газа в трубке, превращая их в ионы. Наличие положительно и отрицательно заряженных частиц в трубке обеспечивает возможность прохождения по ней тока.

Как только происходит пробой газового промежутка в трубке с образованием достаточного количества носителей электрического тока, напряжение на ее концах снижается.

При столкновении движущихся заряженных частиц с атомами ртути последние излучают свет в ультрафиолетовом спектре. Покрытие из люминофора преобразует свет в видимое излучение.

Электронный балласт выполняет следующие функции:

  • обеспечивает прохождение тока через электроды в момент для их разогрева;
  • формирует импульс для пробоя газового промежутка колбы;
  • поддерживает напряжение на электродах колбы, необходимое для устойчивого разряда в ней.

Схема балласта сначала превращает переменное напряжение питающей сети в постоянное. Это необходимо для работы электронной схемы лампы. Затем при помощи автогенератора формируется переменное напряжение частотой десятков тысяч герц. За счет этого уменьшаются габаритные размеры ЭПРА и коэффициент пульсаций светового потока лампы.

Типовая схема КЛЛ

Выпрямитель состоит из четырех диодов, включенных по мостовой схеме. В цепь питания включается обрывной резистор или предохранитель. В качестве сглаживающего фильтра применяется электролитический конденсатор в паре с дросселем.

Дополнительно последовательно со схемой выпрямителя устанавливается ограничительный резистор. Его назначение – уменьшить бросок тока, возникающий при подключении питания, когда конденсатор фильтра выпрямителя еще разряжен. В дешевых изделиях ограничительный резистор и дроссель сглаживающего фильтра отсутствуют.

Запуск происходит за счет терморезистора, включенного между электродами лампы. В холодном состоянии его сопротивление невелико. После подачи напряжения по нему протекает ток, разогревающий и электроды, и сам терморезистор. При нагревании сопротивление его увеличивается, ток через цепь накала уменьшается до минимальной величины. Он остается таким до тех пор, пока лампу не отключат и резистор не остынет. После этого схема вновь готова к запуску.

Теперь рассмотрим порядок отыскания неисправностей в КЛЛ и методы их устранения.

Внешний осмотр люминесцентной лампы

Для начала лампу нужно разобрать. Для этого рассоединяем половинки корпуса, вставив плоскую отвертку в пазы его соединительного шва. Действуя отверткой как рычагом и передвигая ее по шву, добиваемся раскрытия защелок, скрепляющих половинки между собой.

КЛЛ в разобранном виде

Затем осматриваем печатную плату и детали, установленные на ней. Проверяем качество пайки – выводы деталей не должны шевелиться в плате при покачивании. Осматриваем дорожки на целостность, проверяем надежность пайки проводов к контактам колбы.

На деталях и плате не должно быть следов копоти от замыканий, а вздувшийся электролитический конденсатор требует замены.

Диагностика нитей накаливания

О возможном обрыве нитей накаливания свидетельствует потемнение внутренней поверхности колбы в местах их расположения. Для диагностики измеряется сопротивление нитей мультиметром – оно составляет около 10 Ом. Если одна из нитей оборвана, лампу можно заставить работать, припаяв параллельно контактам нити резистор с сопротивлением 10 Ом.

Старт КЛЛ с таким резистором возможен за счет электронов, выделяемых вблизи исправного электрода. Однако запускаться она будет хуже, так как носителей на этом этапе станет меньше, а их движение – эффективным только при определенном направлении питающего трубку тока.

Можно сразу же проверить терморезистор в цепи накала. Его сопротивление в холодном состоянии должно соответствовать указанному на корпусе.

Если оборваны обе нити, лампу придется утилизировать. Но электронные компоненты выбрасывать не стоит, они еще пригодятся для ремонта других ламп.

Неисправности выпрямителя

Диагностика электронной схемы лампы начинается с проверки целостности предохранителя (обрывного резистора). Найти его не сложно – он последовательно соединен с одним из проводов цоколя и расположен недалеко от диодов выпрямителя. Предохранитель не перегорает сам по себе, его обрыв – следствие короткого замыкания в защищаемой цепи.

В этом же районе расположен и ограничительный резистор. Его сопротивление невелико – несколько единиц Ом. Но иногда на плате вместо него производители устанавливают перемычку.

Диоды выпрямителя проверяются мультиметром по очереди, для чего один из выводов каждого из них отпаивается от платы. Для проверки мультиметр устанавливают в режим измерения сопротивления и касаются его щупами диода, меняя полярность их подключения. В одном направлении диод проводит ток, и его сопротивление равно сотням Ом, а в другом – бесконечности. Если это не так или в обратном направлении диод имеет некоторое сопротивление, то его меняют.

Электролитический конденсатор фильтра питания проверяется мультиметром: щупы подключаются к выводам в соответствии с указанной на корпусе полярностью. При коротком замыкании между выводами, отсутствии зарядного тока или не желании его уменьшаться до бесконечности, конденсатор меняется. Однако гарантированный способ убедиться в его исправности – выпаять и временно заменить новым. Рабочее напряжение конденсатора – 400 В, напряжения питания мультиметра недостаточно для его объективной проверки.

При наличии в схеме фильтра питания дросселя его тоже нужно проверить на целостность.

Поиск неисправностей в схеме генератора

Приоритетное направление поиска – полупроводниковые элементы. В схеме генератора импульсов КЛЛ это транзисторы, диоды и динистор.

Динистор – это полупроводниковый прибор, который имеет большое сопротивление в обоих направлениях до тех пор, пока напряжение на его выводах не превысит величину порогового значения.

Проверить исправность динистора в домашних условиях можно, заменив таким же или аналогом, имеющим одинаковое напряжение открытия. Косвенно неисправность элемента определяется мультиметром, если измеренное сопротивление детали хотя бы в одном направлении не равно бесконечности.

Читать еще:  Цветовая маркировка проводов в сетях 220 и 380В

Биполярные транзисторы также проверяются мультиметром. Для этого поочередно измеряется сопротивление между базой и коллектором, базой и эмиттером в обоих направлениях. В одном направлении транзистор «открыт» и сопротивление выводов относительно базы порядка сотни Ом. Во всех остальных комбинациях подключения щупов мультиметра оно равно бесконечности. Между коллектором и эмиттером оно равно бесконечности всегда.

Если полупроводниковые элементы исправны, проверяется исправность оставшихся деталей – конденсаторов и резисторов.

ЭПРА ДЛЯ ЛАМПЫ СВОИМИ РУКАМИ

Необходимость хорошего освещения радиолюбительского места занятий, с достаточным световым потоком и в тоже время экономичного, подвигло, можно даже сказать, на некоторые искания и пробу вариантов. Сначала использовал обычную небольшую лампу прищепку, поменял её на маленький настольный люминесцентный светильник, затем был 18 ваттный люминесцентный светильник «потолочно — настенного» варианта китайского производства. Последнее понравилось более всего, но крепление непосредственно самой лампы в арматуре было несколько занижено, буквально на два – три сантиметра, однако «для полного счастья» их и не хватало. Выход нашёл в том, чтобы сделать тоже самое, но по своему. Так как работа имевшегося ЭПРА нареканий не вызывала логично было схему повторить.

Схема принципиальная

Это большая часть данного ЭПРА, дроссель и конденсатор у китайцев сюда не вошли.

Собственно добросовестно срисованная с печатной платы схема. Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и при помощи замеров, с предварительным выпаиванием компонентов из платы. На схеме номинал резисторов указан в соответствии с цветовой маркировкой. Только в отношении дросселя позволил себе не разматывать имеющийся для определения количества витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) – сработало.

Рисунок можно сохранить на ПК и увеличить

Первая сборка на монтажной плате. Номиналы компонентов подбирал скрупулёзно, невзирая на габариты и количество, и был вознаграждён – лампочка зажглась с первого раза. Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки, его магнитная проницаемость неизвестна, диаметр провода катушек на него намотанных 0,3 мм (без изоляции). Первый пуск в обязательнейшем порядке через лампочку накаливания в 25 Вт. Если она горит а люминесцентная первоначально мигает и тухнет – увеличивайте (постепенно) номинал С4, когда всё заработало и ничего подозрительного обнаружено не было, и убрал лампу накаливания, то уменьшил его номинал до первоначального значения.

В какой-то мере ориентируясь на печатную плату первоисточника, нарисовал печатку под имеющийся подходящий корпус и электронные компоненты.

Протравил платку и собрал схему. Уже предвкушал момент, когда буду доволен собой и рад бытию. Но, схема, собранная на печатной плате отказалась работать. Пришлось вникать и заниматься подбором резисторов и конденсаторов. На момент установки ЭПРА по месту эксплуатации С4 имел ёмкость 3n5, С5 – 7n5, R4 сопротивление 6 Ом, R5 — 8 Ом, R7 – 13 Ом.

Светильник «вписался» не только в дизайн, лампа, поднятая до упора вверх, дала возможность комфортно пользоваться полочкой внутри ниши секретера. Уют в «помещении» наводил Babay.

Ремонт энергосберегающих ламп своими руками

Данная лампа перегорает двумя способами:

Для начала выясним что произошло и попытаемся ее разобрать поддев плоской отверткой в местах указанными стрелками на фотографии. Внутри патрона энергосберегалки имеются специальные защелки, которые надо будет аккуратно отщелкнуть, причем так чтобы не сломать корпус

Вставляете отвертку между двух половинок, и крутите ее вправо или влево. Когда щель увеличится, в нее можно просунуть еще одну отвертку, а первой немного отступить, вставить в щель и опять провернуть. Здесь самоеосновное – отщелкнуть первую. Должно получится вот так:

Перед нами окажется плата электронного блока, которая связана с цоколем и колбой лампы. Сама плата электронного блока – это стандартное пускорегулирующее устройство. Затем переходим к операции по отпаиванию колбы.

Откусываем провода питания:

Прозваниваем накальные нити в колбе энергосберегающей лампы:

Если хоть одна спираль перегорела, то колбу выкидываем, иначе подбираем к хорошей колбе исправную электронику. Раз, два, три . Лампочка гори, и все мы собрали своими руками рабочую лампочку из нескольких 🙂

Для желающих поискать неисправности в электронном баласте привожу схему последнего.

По сути, это импульсный блок питания. Схема запуска состоит из элементов VD1, С2, R6 и динистора VS1. Диоды VD2, VD3 и резисторы R1, R3 выполняют защитные функции. При включении ЛДС через R6 заряжается С2, в определенный момент открывается динистор VS1 и формируется импульс, открывающий транзистор VT2. После этого конденсатор С2 разряжен, а диод VD1 шунтирует эту цепь. Запускается генератор на транзисторах VT1, VT2 и трансформаторе Тг1.

На нити лампы поступает напряжение через “силовой” конденсатор С6, резонансный СЗ и индуктивность L1. Разряд в лампе происходит на резонансной частоте, определяемой емкостью СЗ. Во время разряда СЗ шунтируется, и частота контура снижается, так как в работу вступает конденсатор С6 большей емкости. В это время транзистор VT1 открыт, сердечник Тг1 входит в насыщение, и за счет обратной связи по базе транзистор закрывается. Далее процесс повторяется.

В стартере возникает газовый разряд, его контакты нагреваются и замыкаются, ток течет через нити накала лампы, и они раскаляются до температуры около 800°С. Контакты стартера остывают, размыкаются, в дросселе возникает ЭДС самоиндукции, т.е. дроссель выдает импульс высокого напряжения на электроды ЛДС, что вызывает зажигание газового разряда в лампе

Можно к рабочей колбе можно подсунуть стандартную дроссельную схему запуска. Нити накала в такой лампе включены последовательно через стартер. Дроссель выполнен на Ш-образном магнитопроводе (при плохой пропитке или сборке весьма гудящий компонент). Напряжение сети при замыкании тумблера, проходя через дроссель, поступает на нить накала первой колбы лампы, далее — на стартер и вторую нить накала. Стартер служит прерывателем.

Напряжение зажигания тлеющего разряда стартера меньше напряжения сети, но больше рабочего напряжения лампы. В стартере возникает газовый разряд, его контакты нагреваются и замыкаются, ток течет через нити накала лампы, и они раскаляются до температуры около 800°С.

Контакты стартера остывают, размыкаются, в дросселе возникает ЭДС самоиндукции, т.е. дроссель выдает импульс высокого напряжения на электроды ЛДС, что вызывает зажигание газового разряда в лампе.

Путем нехитрой переделки элетронного блока энергосберегающей лампы можно сделать импульсный блок питания, для этого потребуется лишь подключить дополнительный трансформатор с выпрямителем.

Трансформатор L1 можно также сделать своими руками из дросселя, включенного последовательно лампе имеющегося в схеме, предварительно разобрав его и удалив прокладки, создающие зазор в магнитопроводе,а затем добавить вторичную обмоткуили сделать новый трансформатор на ферритовом кольце от старого компьютерного блока питания диаметром 15-20 мм, — первичная обмотка 350 витков ПЭВ 0,23, вторичная — в зависимости от того выходного напряжения которое нам потребуется.

Со временем в бардачке любого радиолюбителя скапливается огромное количество электронной начинки от энергосберегающих лампочек, а многие радиокомпоненты из них можно активно использовать в других радиолюбительских направлениях. Так высоковольтный генератор из балласта обычной энергосберегающей лампы собирается за 5 минут, и вуаля питание генератора Тесла уже есть.

Подборка нестандартных схем запитки таких ламп не переменным, а постоянным током, а также рассмотрен балласт для люминесцентных ламп на микросхеме IR2151.

Ох уж этот вопрос энергосбережения привел к тому, что купить обычную лампочку накала практически невозможно, а лампы дневного света раздражают наши глаза. Ответ прост переходим на светодиодные лампы которые не только более комфортные чем люминесцентные, но еще и более энергоэффективные и долговечные. Но посмотрев на их цену в магазине, желание их приобретать быстро отпадает. Но мы не будем отчаиваться мы же радиолюбители, так изготовим самодельные светодиодные лампочки от сети напряжением 220 В.

При конструирование светодиодной лампы, любой разработчик сталкивается с задачей отвода тепла, выделяющегося в небольшом объёме светильника, т.к перегрев светодиодам противопоказан. Кроме того источником выделения тепла, помимо самих светодиодов, является блок питания или другими словами — светодиодный драйвер. Рассмотрены конструкции на микросхемах: Supertex HV9910, LT3799 и NCL30000. В архиве приведены их подробные справочные характеристики.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector