Kontakt-bak.ru

Контракт Бак ЛТД
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электродвигатель с фазным ротором

Особенности работы асинхронных двигателей

Традиционно для кранового электропривода применяются специально разработанные серии электродвигателей переменного и постоянного тока. По геометрии магнитопровода, степени использования электротехнических материалов, электромеханическим характеристикам и конструктивному исполнению такие электродвигатели существенно отличаются от двигателей общепромышленного исполнения.

Режим работы электродвигателей в крановом электроприводе характеризуется широким изменением нагрузок, частыми пусками и торможениями, широким диапазоном изменения скорости ниже и выше номинальной (в электроприводах постоянного тока и частотно- регулируемых электроприводах).

Крановые двигатели рассчитаны для работы в повторно-кратковременном режиме, который характеризуется продолжительностью включения (ПВ) 15, 25, 40 и 60% при продолжительности цикла не более 10 мин. Основным номинальным режимом крановых двигателей переменного тока является ПВ=40%.

Из-за высоких требований к динамике двигателей в переходных процессах пуска и торможения и для снижения расхода энергии при этом двигатели конструируются таким образом, чтобы момент инерции ротора был, по возможности, минимальным. Снижение момента инерции достигается путем уменьшения высоты оси вращения при заданной мощности двигателя.

Электродвигатели имеют повышенный (по сравнению с электродвигателями общепромышленного исполнения) запас прочности механических узлов и деталей. Крепление пакета ротора на валу всегда производится при помощи шпонки.

Традиционно, основное применение в крановых электроприводах находят асинхронные двигатели с фазным ротором. Регулирование скорости и момента в электроприводах с такими двигателями производится включением в цепь ротора пускорегулирующих резисторов. Для получения пониженных (посадочных) скоростей опускания груза применяется режим противовключения или различные специальные схемы включения (например – динамического торможения самовозбуждением).

Существуют также модификации крановых асинхронных двигателей с короткозамкнутым ротором (при мощности до 30 кВт) для применения в электроприводах, имеющих, как правило, низкие номинальные скорости и не требующие их регулирования. Кроме того, существуют модификации крановых электродвигателей в двух и трехскоростном исполнении.

Все эти двигатели рассчитаны на питание от промышленной сети стандартного напряжения 220/ 380 В при частоте 50 Гц. Хотя это не означает, что они не могут работать в составе частотно- регулируемых электроприводов, тем не менее, в последнее время разрабатываются специальные серии асинхронных двигателей, в том числе и крановых, оптимизированные для работы в системах частотного регулирования.

Таким образом, крановые асинхронные двигатели в настоящее время условно можно разделить на электродвигатели с фазным и короткозамкнутым ротором, предназначенные для питания от промышленной сети, и короткозамкнутые электродвигатели для частотно- регулируемых электроприводов.

Крановые асинхронные двигатели с фазным и короткозамкнутым ротором, предназначенные для питания от промышленной сети

Отечественной промышленностью выпускаются асинхронные крановые электродвигатели с фазным и короткозамкнутым ротором, одно- и двухскоростные. Для применения на кранах общего назначения выпускаются электродвигатели с классом нагревостойкости изоляции F, для кранов и агрегатов металлургического производства — класса H.

Основные серии двигателей: фазные — MTF, MTH, 4MTF, 4MTH, 4MTM и короткозамкнутые – MTKF, MTKH, 4MTKF, 4MTKH. Короткозамкнутые электродвигатели выпускаются мощностью до 30 кВт. Кроме того, для малых мощностей выпускаются двигатели DMTF, DMTKH, AMTF, AMTKH.

Двухскоростные двигатели выпускаются сериями MTKH, 4MTKH и 5АТ.

Двигатели представлены в шести-, восьми- и десятиполюсном исполнениях. Быстроходные обмотки двухскоростных двигателей выпускаются также в четырехполюсном исполнении.

Основное конструктивное исполнение двигателей — горизонтальное на лапах с одним концом вала. Двигатели серии 4МТ отличаются от двигателей серии МТ установочно- присоединительными размерами, двигатели 4МТ выпускаются в соответствии с нормами МЭК.

Электродвигатели всех габаритов изготавливаются в закрытом обдуваемом исполнении, двигатели мощностью свыше 45 кВт, кроме того, в защищенном исполнении с независимой вентиляцией от внешнего вентилятора с электроприводом.

Следуют отметить, что крановые электродвигатели большинство времени работают на номинальных скоростях, где эффективность самовентиляции велика. Поэтому независимая вентиляции в крановых двигателях применяется в электроприводах интенсивного режима работы, где велика доля пусковых и тормозных потерь, и где ее применение позволяет избежать увеличения статической мощности.

Представляет интерес возможность использования крановых асинхронных двигателей с фазным и короткозамкнутым ротором предназначенных для питания от промышленной сети в составе частотно-регулируемого электропривода. В настоящее время имеется положительный опыт эксплуатации асинхронных двигателей мощностью до 55 кВт с закороченным фазным ротором при питании от преобразователей частоты. Такое техническое решение принималось при модернизации кранов, оборудованных традиционными системами кранового электропривода на базе асинхронного двигателя с фазным ротором. Для снижения стоимости такой модернизации сохранялись электродвигатели и, в ряде случаев, пускорегулирующие резисторы, которые применялись в качестве тормозных.

Электродвигатель с фазным ротором, выбранный для работы в традиционной системе кранового электропривода с реостатным регулированием при переводе его на питание от преобразователя частоты (если режим работы механизма не превышается), всегда имеет меньший уровень пусковых потерь. При векторном управлении, как правило, снижаются потери и в установившемся режиме, так как при частичной нагрузке в электроприводе производится оптимизация энергопотребления.

Короткозамкнутые крановые электродвигатели серий МТ и 4МТ мощностью до 30 кВт достаточно широко применяются при создании крановых электроприводов механизмов горизонтального перемещения (например, на башенных кранах), а в ряде случаев и в электроприводах механизмов подъема.

Частотно-регулируемые крановые электродвигатели

Работа асинхронных двигателей в системах частотного регулирования имеет свои особенности. Прежде всего, при частотном управлении значительно снижаются потери энергии в двигателях в пуско-тормозных режимах. Это позволяет переходить на более высокооборотные электроприводы, и при проектировании двигателей основное внимание уделять снижению потерь в обмотках двигателя в номинальном режиме. При проектировании двигателей для системы частотного регулирования учитывается следующее:

  1. Основные соотношения между геометрическими размерами, принятые для крановых асинхронных двигателей, сохраняются, поскольку определяющим здесь является режим работы, а не система регулирования.
  2. В современных частотно-регулируемых электроприводах с векторным управлением механические характеристики формируется системой управления преобразователя. Поэтому при проектировании электродвигателей, предназначенных для работы только с преобразователями частоты, можно не предпринимать специальные меры для повышения перегрузочной способности и пускового момента.
  3. Оптимальные частоты вращения двигателей в системах частного регулирования, как уже было сказано, выше, чем в обычных системах, и составляют 1900-1800 об/мин для легкого и среднего режимов работы и до 1000 — 800 об/мин — для тяжелого режима. Однако при проектировании следует согласовывать максимальную частоту вращения разрабатываемого электропривода и максимальную допустимую частоту вращения редуктора.
  4. Двигатели должны быть работоспособны при повышении частоты выходного напряжения преобразователя в 1,5-2 раза по отношению к номинальной частоте.
  5. С целью снижения потерь обмотка ротора двигателя заливается чистым алюминием или выполняется медной, скольжение при этом — минимальное. Регулирование выходного напряжения и частоты двигателя позволяет оптимизировать использование его активных частей и обеспечить работу двигателя в режиме минимальных потерь.
  6. Возможно исполнение двигателей на нестандартное напряжение, соответствующее выходному напряжению преобразователя частоты.

Все эти мероприятия, а также оптимальное разграничение зон регулирования, позволяют при одинаковой нагрузке снизить в 1,5-1,8 раза мощность двигателя в частотно-регулируемом приводе.

Читать еще:  Способы включения трехфазных двигателей в однофазную сеть

Специальная серия крановых двигателей для частотно-регулируемых электроприводов выпускается отечественной промышленностью. Эта серия включает в себя двигатели типа АД2КД мощностью от 4 до 11 кВт в шести- и четырехполюсном исполнениях с пристроенными дисковыми тормозами и двигатели 4МТКД мощностью от 22 до 110 кВт в шести- и восьмиполюсном исполнениях. Двигатели 4МТКД выполнены с использованием основных узлов традиционных двигателей серии 4МТН и изготавливаются в закрытом обдуваемом исполнении, а также с вентиляцией, не зависимой от внешнего вентилятора с электроприводом.

Источник: ЗАО «КранЭлектроМаш»

У ВАС АВАРИЙНАЯ СИТУАЦИЯ?

Звоните нам по сервисному телефону. Мы всегда доступны для Вас по данному номеру: T +49 5066 90333-0
emergency(at)helmke.de

Новое

ПРИВОДНЫЕ СИСТЕМЫ, РАЗРАБОТАННЫЕ HELMKEHELMKE является признанным во всем мире специалистом по обеспечению комплексными приводными системами. Преобразователи, разработанные HELMKE, проектируются и изготавливаются для выполнения конкретных задач заказчиков и специфических отраслевых задач. [ [подробнее] ]

АСИНХРОННЫЕ ЭЛЕКТРОДВИГАТЕЛИ С ФАЗНЫМ РОТОРОМ HELMKE – СОЗДАНО НАВЕКА

Асинхронные электродвигатели с фазным ротором используются во многих приводах высокой мощности. Наиболее часто их применяют в сырьевой промышленности, например, при добыче руды и минералов или на производствах связующих веществ, таких как цемент, известняк и гипс, в различного рода дробильных установках, роликовых прессах и прокатных станах, а также в крупногабаритных вентиляторах, насосах и конвейерах.

Асинхронные электродвигатели с фазным ротором используются во многих приводах высокой мощности. Наиболее часто их применяют в сырьевой промышленности, например, при добыче руды и минералов или на производствах связующих веществ, таких как цемент, известняк и гипс, в различного рода дробильных установках, роликовых прессах и прокатных станах, а также в крупногабаритных вентиляторах, насосах и конвейерах.

К сожалению, наиболее прочные и наиболее экономичные асинхронные короткозамкнутые электродвигатели обладают свойством, из-за которого их пуск непосредственно от сети затруднен, а в некоторых случаях невозможен. Так, в состоянии покоя и на небольших оборотах в момент пуска они создают лишь малый крутящий момент, хотя при этом требуют очень сильный ток, превышающий номинальный ток электродвигателя в несколько раз. Поэтому работающая от привода машина, технологический процесс и сеть до привода ограничивают применение данного простейшего концепта привода.

Например, для работы загруженного прокатного стана нужен очень большой крутящий момент при пуске или же особый пусковой момент трогания величиной, вероятно, намного превышающей номинальный крутящий момент используемого электродвигателя. Большая инерция загруженного стана приводит к продолжительному периоду выхода на рабочий режим, поэтому нужный высокий крутящий момент необходим в течение продолжительного времени даже при малых оборотах. Если по требованиям технологического процесса пуск выполняется несколько раз в день, то тепловая нагрузка на элементы привода в этом случае довольно высокая, что может ограничивать число пусков.

В случае высокого отношения номинальной мощности электродвигателя к нагрузочной способности сети до электродвигателя большая перегрузка по току при пуске приводит к существенной просадке напряжения, что может вызвать перебои в работе параллельных потребителей. Это и есть случай установки одиночных электродвигателей большой мощности относительно общей мощности сети.

Конструкция асинхронного электродвигателя с фазным ротором при использовании компактного пускового устройства позволяет достичь пусковой момент соизмеримый с максимальным моментом двигателя, что в частности может достигать двух- а то и трехкратному номинальному моменту, при этом пусковой ток соответствует номинальному току двигателя, либо незначительно его больше.

В таких случаях использование асинхронных электродвигателей с фазным ротором является более рациональным. В отличие от частотно-регулируемых приводов, когда для больших пусковых моментов необходимо использовать преобразователи, мощностью большей номинальной, что в номинальном режиме повышает потери, пусковой момент асинхронного двигателя с фазным ротором зависит от его физических свойств, а пусковой реостат работает только в процессе разгона. При изменении пусковой характеристики с помощью изменения внешнего сопротивления роторной цепи возникают лишь незначительно большие потери в двигателе, таким образом количество допустимых пусков не ограничивается нагревостойкостью самого двигателя.

Электродвигатель АК4 с фазным ротором

Назначение и эксплуатационные характеристики АК4

Электродвигатели переменного тока с фазным ротором серии АК4 предназначены для привода механизмов с тяжелыми условиями пуска и требующих регулирования частоты вращения:
— для механизмов, момент которых не зависит от частоты вращения, регулирование частоты вращения допускается в диапазоне (1,0-0,8)nnom
— для механизмов, момент которых изменяется по вентиляторной характеристике, регулирование частоты вращения допускается в диапазоне (1,0-0,5)nnom

Двигатели предназначены для работы от сети переменного тока частотой 50 Гц напряжением 6000 В и 3000 В.
По просьбе заказчика на базе вышеуказанных машин могут быть изготовлены двигатели на другие мощности, напряжения и частоту сети с учетом требования контракта.
Пуск двигателей от полного напряжения сети с включенными в цепь ротора пусковыми сопротивлениями с помощью станции управления.
Соединение двигателей с приводным механизмом осуществляется посредством упругой муфты.
Двигатели имеют подшипники качения с пластичной смазкой.
Изоляционные материалы обмотки статора и ротора класса нагревостойкости «F» с температурным использованием по классу «В». Изоляция обмотки статора термореактивная типа «Монолит2».
Обмотка статора имеет шесть выводных концов, закрепленных на четырех изоляторах в коробке выводов.
Соединение фаз обмоток звезда.
Двигатели допускают правое и левое направление вращения. Изменение направления вращения
осуществляется только из состояния покоя.

Структура условного обозначения:АК4-HL-XK
АК— асинхронный двигатель с фазным ротором;
4— номер серии;
H(400, 450) — высота оси вращения в мм;
L(Х,У.ХК,УК) — условная длина двигателя;
X(4,6,8,10,12) — число полюсов;
K(У3, Т3) — климатическое исполнение и категория размещения.

Характеристики и особенности:

АО «Электромаш» первое и базовое предприятие, освоившее двигатели АК4 как часть единой, унифицированной серии А4, ДАЗО с короткозамкнутым ротором и АК4 с фазным ротором;
Выпускаются взамен поставлявшихся ранее электродвигателей серии АК, АКЗ 12 и 13 габарита и могут быть поставлены на замену комплектно с переходной плитой или балками для установки без переделки фундамента;
Имеют оптимальное соотношение энергетических показателей и удельной материалоемкости;
Усиленная обшивка по сравнению с аналогами;
Полная унификация по статорам с электродвигателями А4 и ДАЗО4;
Возможна поставка в исполнении, позволяющем обеспечить подключение принудительной вентиляции;
Обеспечиваемая комплектная поставка с пусковой аппаратурой типа УПРФ, пускорегулирующей по типу ТПРС и по типу тиристорного коммутатора ТТРЕ, ТТРП.

Асинхронные электродвигатели: схема, принцип работы и устройство

Асинхронный электродвигатель – это электрический агрегат с вращающимся ротором. Скорость вращения ротора отличается от скорости, с которой вращается магнитное поле статора. Это – одна из важных особенностей работы агрегата, так как если скорости выровняются, то магнитное поле не будет наводить в роторе ток и действие силы на роторную часть прекратится. Именно поэтому двигатель называется асинхронным (у синхронного показатели скоростного вращения совпадают).

Читать еще:  Как правильно выполнить опрессовку изолированных наконечников

В данной статье мы сфокусируемся на том, что представляет собой схема работы такого двигателя и – самое главное, насколько она эффективна при его эксплуатации.

Устройство и принцип действия

Ток в обмотках статора создает вращающееся магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону, что и магнитное поле.

Относительная разность скоростей вращения ротора и частоты переменного магнитного поля называется скольжением. В установившемся режиме скольжение невелико: 1-8% в зависимости от мощности.

Асинхронный двигатель

Подробнее о принципах работы асинхронного электродвигателя – в частности, на примере агрегата трехфазного тока, вы можете прочесть здесь, на сайте, в одном из наших материалов. Далее же мы разберем, какие бывают разновидности асинхронных электрических машин.

Виды асинхронных двигателей

Можно выделить 3 базовых типа асинхронных электродвигателей:

  • 1-фазный – с короткозамкнутым ротором
  • 3-х фазный – с короткозамкнутым ротором
  • 3-х фазный – с фазным ротором

Схема устройства асинхронного двигателя с короткозамкнутым ротором

То есть, двигатели классифицируются по количеству фаз (1 и 3) и по типу ротора – с короткозамкнутым и с фазным. При этом число фаз с установленным типом ротора никак не взаимосвязано.

Ещё одна разновидность – асинхронный двигатель с массивным ротором. Ротор сделан целиком из ферромагнитного материала и фактически представляет собой стальной цилиндр, играющий роль как магнитопровода, так и проводника (вместо обмотки). Такой вид двигателя очень прочный и обладает высоким пусковым моментом, однако в роторе могут возникать большие потери энергии, а сам он может сильно нагреваться.

Какой ротор лучше, фазный или короткозамкнутый?

  • Более-менее постоянная скорость вне зависимости от разных нагрузок
  • Допустимость кратковременных механических перегрузок
  • Простая конструкция, легкость пуска и автоматизации
  • Более высокие cos φ (коэффициент мощности) и КПД, чем у электродвигателей с фазным ротором
  • Трудности в регулировании скорости вращения
  • Большой пусковой ток
  • Низкий мощностной коэффициент при недогрузках
  • Высокий начальный вращающий момент
  • Допустимость кратковременных механических перегрузок
  • Более-менее постоянная скорость при разных перегрузках
  • Меньший пусковой ток, чем у двигателей с короткозамкнутым ротором
  • Возможность использования автоматических пусковых устройств
  • Большие габариты
  • Коэффициент мощности и КПД ниже, чем у электродвигателей с короткозамкнутым ротором

Какой двигатель лучше выбрать?

Асинхронный или коллекторный? Синхронный или асинхронный? Сказать однозначно, что определенный тип двигателя лучше, точно нельзя. В пользу асинхронных моделей говорят их следующие преимущества.

  • Относительно небольшая стоимость
  • Низкие эксплуатационные затраты
  • Отсутствие необходимости в преобразователях при включении в сеть (только для нагрузок, не нуждающихся в регулировании скорости)
  • Отсутствие потребности в дополнительном источнике питания – в отличие от синхронных аналогов

Тем не менее, у асинхроников есть недостатки. А именно:

  • Малый пусковой момент
  • Высокий пусковой ток
  • Отсутствие возможности регулировки скорости при подключении к сети
  • Ограничение максимальной скорости частотой сети
  • Высокая зависимость электромагнитного момента от напряжения питающей сети
  • Низкий мощностной коэффициент – в отличие от синхронных агрегатов

Тем не менее, все перечисленные недостатки можно устранить, если питать асинхронный двигатель от статического частотного преобразователя. Кроме того, если соблюдать правила эксплуатации и не перегружать агрегаты, то они исправно прослужат длительный срок.

Но даже несмотря на то, что синхронные машины обладают довольно конкурентными преимуществами, большинство двигателей сегодня – именно асинхронные. Промышленность, сельское хозяйство, ЖКХ и многие другие отрасли используют именно их за счет высокого КПД. Но коэффициент полезного действия может значительно снижаться за счет таких параметров, как:

  • Высокий пусковой ток
  • Слабый пусковой момент
  • Рассинхрон между механическим моментом на валу привода и механической нагрузкой (это провоцирует высокий рост силы тока и избыточные нагрузки при запуске, а также снижение КПД при пониженной нагрузке)
  • Невозможность точной регулировки скорости работы прибора

Другими факторами, от которых зависит КПД асинхронного электродвигателя, являются:

  • степень загрузки двигателя по отношению к номинальной
  • конструкция и модель
  • степень износа
  • отклонение напряжения в сети от номинального.

Как избежать снижения КПД?

  • Обеспечение стабильного уровня загрузки – не ниже 75%
  • Увеличение мощностного коэффициента
  • Регулировать напряжение и частоту подаваемого тока

Для этого используются:

  • Частотные преобразователи – они плавно изменяют скорость вращения двигателя путем изменения частоты питающего напряжения
  • Устройства плавного пуска – они ограничивают скорость нарастания пускового тока и его предельное значение, как одни из факторов, из-за которых падает КПД

Итак, асинхронный двигатель имеет довольно широкую область использования и применяется во многих хозяйственных и производственных сферах деятельности. У нас, в компании РУСЭЛТ, представлен широкий выбор электродвигателей данного типа, приобрести который вы можете по ценам, которые ощутимо выгоднее, чем у конкурентов.

Конструкция асинхронных двигателей с фазным ротором

Конструкция асинхронной машины с контактными кольцами представлена на рис. Двигатели этого типа отличаются от короткозамкнутых только устройством ротора.
Статор двигателя может иметь те же разновидности конструктивных исполнений, что и в короткозамкнутом двигателе. Статор двигателя по рис. 6 (с радиальными каналами в магнитопроводе) почти не отличается по конструкции от статора на рис. 3. Статор состоит из станины 7, в которой при помощи нажимных шайб 5 и шпонок 7 укреплены пакеты магнитопровода, набранные из кольцевых пластин 2. Для образования каналов между пакетами служат распорки 4. В пазы магнитопровода статора уложена двухслойная обмотка, катушки 30 которой связаны между собой соединениями 8. Выводные концы обмотки статора сосредоточены в выводной коробке 23. К фундаменту станина крепится лапами 22. Для подъема двигателя при монтаже служат рымы 6.


Асинхронный двигатель с фазным ротором (250 кВт, 3000 об/мин, 50 Гц, защищенный продуваемый)

Ротор двигателя состоит из вала 26, на котором при помощи нажимных колец 24, шпонки 21 и разрезной шпонки 20 укреплены в запрессованном состоянии пакеты магнитопровода, набранные из кольцевых пластин 3 (см. рис. 2, а). Радиальные вентиляционные каналы между пакетами образуются дистанционными распорками, помещенными на каждом зубцовом делении. В полузакрытых пазах магнитопровода ротора, показанных в разрезе на рис. 4, б, размещается трехфазная двухслойная волновая стержневая обмотка 29, соединенная обычно в звезду, выводные концы которой посредством электрических кабелей 19, проведенных через отверстие в валу, присоединены к контактным кольцам 75.
Стержни 1 обмотки с заранее наложенной витковой изоляцией 2, 3 (см. рис. 4, б) вставляются в пазы с торцевой стороны магнитопровода. Предварительно в пазы вводится пазовая коробочка 4, играющая роль корпусной изоляции. Для укрепления стержней в радиальном направлении и усиления витковой и корпусной изоляции используются изоляционные прокладки 5—6. Центробежная сила, действующая на пазовую часть обмотки, воспринимается клиньями 7 из изоляционного материала.
Лобовые части обмоток укладываются на нажимные шайбы 24 (рис. 6), которые одновременно выполняют роль обмоткодержателей, и охватываются снаружи кольцевыми бандажами 32, рассчитанными на восприятие центробежной силы.
Электрическое соединение вращающейся обмотки ротора с внешними (неподвижными) электрическими цепями производится при помощи контактных колец, на которые выведены обмотки, и щеточного устройства, связанного с неподвижными электрическими цепями. Контактные кольца выполняются как отдельный узел машины. Кольца 75, изготовленные из стали, отделяются друг от друга и от корпуса с помощью изоляционных прокладок 7 7. Все эти детали стягиваются вместе изолированными шпильками 16 и прифланцовываются к торцу вала. К кольцам плотно прижимаются щетки, электрически соединенные с токоподводящими шинами 72 щеточной траверсы (кроме этих шин на рис. 6 показаны болты 77 щеточной траверсы и ее изоляционные детали, а также корпус 73 и крышка 14; щетки и щеткодержатели не показаны).
Необходимый электрический контакт щеток с кольцами обеспечивается при помощи щеткодержателей, укрепленных на шинах 72. Соединение токоподводящих шин 72 щеточной траверсы с пусковым реостатом производится в выводной коробке контактных колец 18.

Читать еще:  Фаза на нулевом проводе

Правильное расположение оси ротора по отношению к статору и возможность вращения ротора обеспечиваются с помощью таких же деталей, как в короткозамкнутом двигателе по рис. (подшипников качения, роликового 25 и шарикового /0, подшипниковых крышек 27 и подшипниковых щитов 31).
По способу охлаждения и защиты от воздействия внешней среды двигатель по рис. 6 имеет продуваемое каплезащищенное исполнение. Внутри машины воздух перемещается аксиально-радиально. Наружный воздух поступает в машину с двух сторон через отверстия в подшипниковых щитах 31 и направляется диффузорами 9 к вентиляционным лопастям 28, промежуткам между лобовыми частями стержней обмотки ротора и к аксиальным каналам в магнитопроводе ротора; далее воздух из аксиальных каналов попадает в радиальные каналы в магнитопроводе ротора и статора; воздух от вентиляционных лопастей 28 и лобовых частей ротора омывает лобовые части обмотки статора. Нагретый в машине воздух попадает в пространство между ярмом статора и корпусом станины, откуда он выбрасывается наружу через боковые отверстия в корпусе. Необходимый для циркуляции воздуха напор создается радиальными каналами в роторе, которые играют роль центробежных вентиляторов.

ЭЛЕКТРОДВИГАТЕЛИ С ФАЗНЫМ РОТОРОМ СЕРИИ АК

Электродвигатели переменного тока с фазным ротором серии АК предназначены для привода механизмов с тяжелыми условиями пуска и требующих регулирования частоты вращения.

Описание:

Двигатели предназначены для работы от сети переменного тока частотой 50 Гц напряжением 6000 В и 3000 В. Двигатели на напряжение 3000 В изготавливаются в габаритах двигателей на напряжение 6000 В с сохранением мощности. Ток статора двигателей напряжением 3000 В в два раза больше, чем у двигателей напряжением 6000 В.

По просьбе заказчика на базе вышеуказанных машин могут быть изготовлены двигатели на другие мощности, напряжение и частоту сети с учетом требования контракта.

Номинальный режим работы — продолжительный.

Пуск двигателей от полного напряжения сети с включенным в цепь ротора пусковым сопротивлением с помощью станции управления.

Электродвигатели могут комплектно поставляться с пусковой аппаратурой типа УПТФ.

Конструктивное исполнение двигателей по способу монтажа — горизонтальное, на лапах, с двумя щитовыми подшипниками, с одним свободным концом вала.

Степень защиты двигателей – ІР23, выводного устройства статора – ІР55.

Способ охлаждения двигателей — самовентиляция.

Конструкция двигателей предусматривает установку в верхней части станины вентиляционного раз­делительного кожуха с окнами для входа и выхода воздуха, закрытыми жалюзи.

Изоляционные материалы обмотки статора и ротора класса нагревостойкости «F» с температурным использованием по классу«B».

Изоляция обмотки статора термореактивная типа «Монолит-2».

Обмотка статора имеет шесть выводных концов, закрепленных на четырех изоляторах в коробке выводов.

Соединение фаз обмоток — «звезда».

Двигатели допускают правое и левое направление вращения. Изменение направления вращения осуществляется только из состояния покоя.

Асинхронный двигатель с фазным ротором

Асинхронный двигатель с фазным ротором – это двигатель, который можно регулировать с помощью добавления в цепь ротора добавочных сопротивлений. Обычно такие двигатели применяются при пуске с нагрузкой на валу, так как увеличение сопротивления в цепи ротора, позволяет повысить пусковой момент и уменьшить пусковые токи. Этим асинхронный двигатель с фазным ротором выгодно отличается от АД с короткозамкнутым ротором.

Статор (3) выполнен, так же как и в обычном асинхронном двигателе, он представляет из себя полый цилиндр, набранный из листов электротехнической стали, в который уложена трехфазная обмотка.

Ротор (4) по сравнению с короткозамкнутым, представляет из себя более сложную конструкцию. Он состоит из сердечника в который уложена трехфазная обмотка, аналогично обмотке статора. Отсюда название двигателя. Если двигатель двухполюсный, то обмотки ротора смещены геометрически друг относительно друга на 120. Эти обмотки соединяются с тремя контактными кольцами (2), расположенными на валу (5) ротора. Контактные кольца выполнены из латуни или стали, причем друг от друга они изолированы. С помощью нескольких металлографитовых щеток (обычно двух), которые расположены на щеткодержателе (1) и прижимаются пружинами к кольцам, в цепь вводятся добавочные сопротивления. Выводы обмоток соединяются по схеме «звезда».

Добавочное сопротивление вводится только при пуске двигателя. Причем им обычно служит ступенчатый реостат, сопротивление которого уменьшают с увеличением оборотов двигателя. Таким образом пуск двигателя осуществляется тоже ступенчато. После того, как разгон закончился и двигатель вышел на естественную механическую характеристику, обмотку ротора закорачивают. Для того, чтобы сохранить щетки и снизить потери на них, в двигателях с фазным ротором существует специальное устройство, которое поднимает щетки и замыкает кольца. Таким образом, удается повысить еще и КПД двигателя.

Добавочное сопротивление позволяет главным образом осуществить пуск двигателя под нагрузкой, работать с ним длительное время двигатель не может, так как механические характеристики слишком мягкие и работа двигателя на них нестабильна.

Для того чтобы автоматизировать пуск двигателя, в обмотку ротора включают индуктивность. В момент пуска, частота тока в роторе наибольшая, а значит и индуктивное сопротивление максимально. Затем, при разгоне двигателя, частота, как и сопротивление уменьшаются, и двигатель постепенно начинает работать в обычном режиме.

За счет усложнения своей конструкции, асинхронный двигатель с фазным ротором, обладает хорошими пусковыми и регулировочными характеристиками. Но по той же причине, его стоимость возрастает приблизительно в 1.5 по сравнению с обычным АД, кроме того увеличивается масса, размеры и как правило, уменьшается надежность двигателя.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты