Kontakt-bak.ru

Контракт Бак ЛТД
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Однофазный двигатель переменного тока

Однофазный электродвигатель

Однофазные электродвигателя предназначены для комплектации электроприводов бытового и промышленного назначения, различных механизмов. Питание электродвигателей осуществляется от сети переменного тока напряжением 220 В.

Однофазные электродвигателя выпускаются в тех же конструктивных исполнениях, что и трехфазные электродвигатели, и соответствуют им по своим размерам. Электродвигатели работают с конденсаторами, предназначенными для подключения в сеть.

На статоре однофазного электродвигателя имеется рабочая обмотка, подключенная к однофазной сети переменного тока, и вспомогательная (пусковую), которая чаще всего соединена с однофазной сетью переменного тока кратковременно только в период пуска. Ротор обмотки, как правило, выполняется короткозамкнутым в виде беличьей клетки.

Отличительной особенностью однофазных электродвигателей от трехфазных является создание статором не вращающегося, а пульсирующего поля и пульсирующего МДС. Это пульсирующее магнитное поле может быть условно разложено на два круговых поля, вращающихся в противоположные стороны с одинаковой скоростью. Амплитуда каждого из этих полей равна половине амплитуды пульсирующего поля Ф/2 (рисунок 1, а).

Рисунок 1 – Принцип работы однофазного электродвигателя

Для лучшего понимания принципов работы однофазного электродвигателя его можно заменить двумя одинаковыми трехфазными электродвигателями, роторы которых закреплены на одном валу, а обмотки статора а1, b1, c1, и a2, b2, c2 соединены последовательно с различным порядком следования фаз. Создаваемые ими магнитные поля при этом вращаются в противоположные стороны с одинаковыми амплитудами, равными Ф/2, и частотами вращения n1 (рисунок 1, б). В свою очередь эти два электродвигателя можно заменить одним, имеющим на статоре две последовательно соединенные трехфазные обмотки с различным чередование фаз и общий ротор, как показано на рисунке 1, в.

B рассматриваемых случаях индуктируемые в обмотках ротора c помощью двух вращающихся полей статopа токи вступают во взаимодействие c этими полями и создают при неподвижном двигателе равные и взаимно противоположные электромагнитные моменты М1, М2 (рисунок 2). При этом начальный результирующий суммарный момент M равен нулю, и однофазный электродвигатель при таком конструктивном исполнении и схеме соединения не может тронуться c места, даже в случае отсутствия тормозного момента на валу, т.е. пусковой момент однофазного асинхронного электродвигателя равен нулю.

При вращении ритора в каком-либо направлении и одна из вращающихся МДС перемещается в том же направлении, что и ротор. Она обеспечивает тот же характер изменения момента на валу М1 в зависимости от скольжения s, что и в трехфазном асинхронном электродвигателе, т.е. при разгоне двигателя, когда скольжение s уменьшается, момент М1 возрастает до некоторого значения Mmax, a при s=0 становится равным нулю.

Рисунок 2 – Зависимость электромагнитных вращающих моментов однофазного асинхронного электродвигателя под действием M1, обратно вращающего М2 магнитного поля и результирующего момента М от скольжения: s – скольжение ротора относительно прямого поля; 2-s – скольжение относительно обратного поля.

B то же время вращающаяся в обратном направлении относительно ротора МДС создает электромагнитный тормозной момент. При этом в роторе наводятся токи повышенной частоты, что обусловливает увеличение индуктивного сопротивления ротора. Соответственно момент М2, создаваемый обратновращающейся МДС, снижается от некоторой величины Мmax. и т, д.

Результирующий момент М = М1 – М2, направленный в сторону вращения ротора, считается положительным (на рисунке 2 изображен выше оси абсцисс). Тормозной момент M2 направлен в прoтивoположном направлении и является отрицательным (на рисунок 2 изображен ниже оси абсцисс). Как видно из приведенной характеристики, условия работы однофазного асинхронного электродвигателя при вращении ротора в ту иль другую сторону одинаковы. Как уже было отмечено, при s=1 M=0, т.e. электродвигатель не может самостоятельно начать вращать при наличии лишь одной рабочей обмотке на статоре.

Подобным образом ведет себя трехфазный электродвигатель при перегорании предохранителя или обрыве фазы питающей сети. Если это повреждение произошло y электродвигателя при неподвижном роторе, то при пуске электродвигателя ротор не придет во вращение; если повреждение произойдет при вращающемся роторе, электродвигатель будет продолжать работать, но во избежание недопустимого перегрева обмоток мощность нагрузки должна быть снижена на 40-50%. Иными словами, при обрыве фазы питающей сети (или перегорании предохранителя) при работающем электродвигателе он должен быть разгружен примерно в 2 раза по отношению к номинальной мощности.

Для того чтобы электродвигатель пришел во вращение, необходимо создать некоторый начальный вращающий момент. Направление вращения ротора при этом будет определяться направлением этого момента. Для пуска электродвигателя, в том числе и под нагрузкой, необходимо предусмотреть специальные меры, направленные на усиление прямого поля и ослабление обратного, чтобы при s= 1

Естественно, что наилучшие условия достигаются при отсутствии обратного поля, создающего тормозной момент на валу электродвигателя и препятствующего тем самым вращению электродвигателя. Разные виды однофазных электродвигателей отличаются друг от друга способами создания пускового момента. Различают электродвигатели с пусковой обмоткой, конденсаторные электродвигатели и с экранированными полюсами.

Однофазные двигатели

Однофазные асинхронные двигатели чаще всего применяются в бытовой технике. Система электроснабжения построена так, что в наш дом подводится только однофазная электрическая сеть. Поэтому в бытовых сетях широко используются однофазные асинхронные двигатели. Однофазные асинхронные электродвигателям переменного тока отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания. Промышленность выпускает однофазные двигатели на небольшие мощности (до 0,5 кВт). Их сфера применения включает в себя вентиляторы, компрессоры холодильников, приводы барабанов стиральных машин, и другая бытовая техника, где не требуется высокая скорость вращения.

Устройство однофазного асинхронного двигателя

Однофазный асинхронный двигатель, обычно имеет на статоре как минимум две обмотки. Друг от друга они сдвинуты на 90 электрических градусов по току, для получения пускового момента Одна из них выступает как рабочая, другая как пусковая. Двигатели получили название однофазных, так как они предназначены для питания от однофазной сети переменного тока.

Кроме того, существует много схем питания трехфазных двигателей от однофазной сети. Для получения вращающегося магнитного поля пусковую обмотку питают через фазосдвигающее устройство, в качестве которого используется резистор или конденсатор. В качестве резистора иногда используют пусковую обмотку, намотанную тонким проводом и большим числом витков, для увеличения сопротивления. В двигателях с пусковым резистором магнитное поле эллиптическое; в двигателях с пусковым конденсатором поле ближе к круговому. Сразу после запуска, пусковая обмотка отключается и двигатель работает как однофазный однообмоточный. Его результирующее поле резко эллиптическое.

По этой причине однофазные двигатели имеют низкие энергетические показатели и малую перегрузочную способность. В двигателях с постоянно включенным конденсатором емкость последнего выбирается, как правило, из условий обеспечения кругового поля в номинальном режиме. Для улучшения пусковых свойств параллельно рабочему конденсатору на время пуска подключается пусковой конденсатор.

В электроприводах с легкими условиями пуска часто применяются однофазные АД с экранированными полюсами. В таких двигателях роль вспомогательной фазы играют размещаемые на явно выраженных полюсах статора короткозамкнутые витки. Поскольку пространственный угол между осями главной фазы (обмотки возбуждения) и витка много меньше 90°, поле в таком двигателе резко эллиптическое. Поэтому пусковые и рабочие свойства двигателей с экранированными полюсами невысоки. Используются однофазные асинхронные двигатели с короткозамкнутым ротором: с повышенным сопротивлением пусковой фазы, с пусковым конденсатором, с рабочим конденсатором, с тем и другим, а также двигатели с экранированными полюсами. Однофазный асинхронный электродвигатель имеют тот же принцип действия, что и трёхфазный электродвигатель. Основным его недостатком является более низкий пусковой момент.

Принцип работы однофазных асинхронных электродвигателей

Однофазный асинхронных электродвигатель, как и трехфазный, работает по принципу электромагнитной индукции. Однако между ними есть и различия:
— однофазные электродвигатели, обычно работают при более низком напряжении 220 В;
— поле статора однофазного двигателя не вращается;

В каждом полупериоде синусоиды, напряжение меняет свой знак и соответственно от отрицательного к положительному меняются полюса. В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это объясняет, почему однофазный асинхронный электродвигатель не может быть пущен самостоятельно.Однако, его можно было бы запустить механически, провернув вал ротора с последующим немедленным подключением питания, как это делалось в старых проигрывателях грампластинок. Сейчас такой способ запуска не применяется, а пуск всех электродвигателей осуществляется автоматически.

Читать еще:  Ремонт светодиодных ламп своими руками: причины поломок и как починить

Ограничения применения однофазных асинхронных двигателей

При использовании однофазных электродвигателей необходимо помнить, что существуют некоторые ограничения при их применении:

  • Однофазные электродвигатели нельзя использовать в режиме холостого хода. Так как при малых нагрузках они сильно перегреваются;
  • Не рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки;
  • Так как у электродвигателя вращающееся магнитное поле асимметрично, то полный ток в одной или двух обмотках может превышать полный тока в сети. Такие токи приводят к перегреву обмоток и выходу их из строя;

О напряжении

Важно напомнить о том, что величина напряжения на пусковой обмотке электродвигателя может превышать значение сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы.

Однофазный асинхронный двигатель: принцип работы

Особенности устройства и работы

Двигатель имеет простое устройство. Статор укомплектован двумя обмотками: первая обмотка — основная, т.е. рабочая, вторая обмотка — пусковая, которая работает только во время запуска мотора.

Если сравнивать с другими двигателями, у однофазного асинхронного мотора нет момента впуска. Если присмотреться, ротор внешне напоминает клетку для грызунов. Ток одной фазы создает магнитное поле, которое состоит из двух полей. При включении двигателя ротор остается без движения.

Расчет результирующего момента при неподвижном роторе находится в основе магнитных полей, которые образуют два вращающих момента.

М — противоположные моменты;

n — частота вращения.

Асинхронный однофазный двигатель: принцип работы

При задействовании неподвижной части наступает вращающий момент. Поскольку он возникает только после запуска, мотор укомплектован отдельным пусковым устройством.

У однофазного асинхронного мотора есть немало отличий от, к примеру, трехфазных. Если говорить об основных, стоит отметить особенности статора. На пазах предусмотрена двухфазная обмотка: основная, т.е. рабочая, и пусковая.

Магнитные оси расположены друг к другу перпендикулярно. При работе основная фаза не вызывает вращение ротора, ось магнитного поля остается неподвижной.

Для расчета обмоток статора разработаны специальные программы.

Какие бывают типы однофазных двигателей

На сегодня существуют следующие типы однофазных асинхронных моторов: с конденсаторным и бифилярным механизмом. У каждого из механизмов свои особенности, достоинства и недостатки.

Бифилярная обмотка в постоянном режиме не используется, поскольку при таком использовании падает значение КПД. С увеличением оборотов, она обрывается. Обмотка пуска включается на пару секунд, расчет работы по 3 сек до 30 раз в час. Если будет превышен запуск, витки перегреются.

Фаза расщепленная, цепь вспомогательной обмотки начинает работать при запуске. Для того, чтобы был достигнут пусковой момент, необходимо создать круговое магнитное поле. Для наилучшего пускового момента используется конденсатор. Моторы с включенными конденсаторами в цепи называются конденсаторными и работают на основе вращения поля магнитов. У конденсаторного мотора предусмотрено две катушки, которые находятся под постоянным напряжением.

Основные принципы работы

В основе принципа работы находится короткозамкнутый ротор. Магнитное поле имеет вид двух кругов с противоположными последовательностями, они двигаются в разные стороны с одинаковой скоростью. Достаточно разогнать ротор в нужную сторону, чтобы он продолжил движение в ту же сторону.

Именно поэтому для запуска однофазного асинхронного двигателя используют кнопку пуска. С ее нажимом статор начинает работу. Токи заставляют вращаться магнитное поле, в воздушном зазоре появляется магнитная индукция. Всего спустя несколько секунд разгон ротора равняется номинальной скорости.

Если кнопку пуска отпустить, электродвигатель переходит с режима двух фаз на одну фазу. Однофазный режим поддерживается за счет переменного поля магнитов, которое из-за скольжения вращается быстрее ротора.

Схема центробежного выключателя

Для эффективной работы однофазного асинхронного двигателя принято встраивать центробежный выключатель, а также реле с замыкающими контактами. Выключатель прерывает пуск статорной обмотки при достижении номинальной скорости ротора. Тепловое реле отключает двухфазную обмотку при перегреве. Это оптимальная комплектация мотора, которая обеспечит безопасную и надежную работу оборудования на долгие годы.

Изменение направления роторного вращения происходит при перемене направления тока в любой из фаз обмотки при запуске. Для этого достаточно нажать пусковую кнопку и переустановить одну или две металлические пластины. Для образования фазового сдвига необходимо добавить в цепь конденсатор или дроссель, резистор.

При запуске двигателя работает две фазы, потом — только одна. Как видите, асинхронный однофазный двигатель принцип работы имеет достаточно простой и понятный. В отличие от других моторов, с ним просто и легко работать.

Коллекторные двигатели переменного тока: однофазные и трехфазные коллекторные электродвигатели

Во многих отраслях промышленности для выполнения технологических процессов необходимы коллекторные двигатели переменного тока: однофазные и трехфазные коллекторные электродвигатели. Конструктивно они практически не отличаются от своих «собратьев» постоянного тока. Механизм движка переменного тока состоит из:

  • ротора с петлевой (параллельной) или волновой (симметричной) обмоткой;
  • коллектора, к которому присоединяется обмотка;
  • статора, набранного из стальных электротехнических пластин.

Достоинства и недостатки коллекторных двигателей переменного тока

Агрегаты такого типа успешно решают задачи, зависящие от работы электропривода. Главным их достоинством является возможность плавного регулирования скорости в режиме энергосбережения.

Но они подходят для использования не на каждом производстве из-за:

  • сложности их изготовления;
  • дороговизны;
  • необходимости в трудоемком техническом обслуживании щеточного механизма и коллектора;
  • плохих токовых условий в коммутации якорной цепи.

Однофазные коллекторные электродвигатели

В комплектацию однофазного движка входят три обмотки. Первая размещается на электрических полюсах и выполняет функцию возбуждения. Вторая (компенсационная обмотка) расположена в роторных пазах и компенсирует отрицательное явление реакции якоря. Дополнительная обмотка предназначена для добавочных полюсов и шунтируется с помощью активного сопротивления.

Когда основная обмотка возбуждается, возникают компенсационные токи и магнитное поле, создающие вращающий момент. Его направление совпадает с направлением вращения магнитного поля. Переключая выводы возбуждающей обмотки, можно изменить направление вращающего момента.

Компенсационная обмотка уменьшает сопротивление индукции и потокосцепления якорной обмотки, а также увеличивает коэффициент мощности движка. Благодаря добавочным полюсам повышается качество коммутации. ЭДС вращения компенсирует реактивную и трансформаторную ЭДС. Легкость пуска достигается при взаимной компенсации ЭДС. Смена рабочего режима и отклонение токовых параметров от заданных величин приводят к тяжелому пуску агрегата.

Однофазные двигатели считаются универсальными устройствами, так как они могут подключаться к сети как постоянного, так и переменного тока. Они применяются как исполнительные механизмы в системах автоматики, в бытовой технике и электроинструментах. Самыми распространенными являются модели небольшой мощности (до 150Вт).

Трехфазные коллекторные электродвигатели

Эти агрегаты подключаются к трехфазной сети. У них обмотка возбуждения обладает качествами шунтового двигателя. Ротор движка подает питающее напряжение на механизм. Основную рабочую функцию выполняет роторная обмотка, подключенная к сети переменного напряжения с помощью токосъемных контактных колец. Статорная обмотка, расположенная в роторных пазах вместе с основной, всеми фазами соединяется с коллектором движка. Каждой фазе соответствуют определенные щетки, которые раздвигаются и сдвигаются с помощью подвижных траверс.

Для работы механизма в режиме асинхронного двигателя щетки устанавливаются на одни и те же пластины коллектора. Но, в отличие от асинхронного агрегата, в коллекторном двигателе роль первичной обмотки играет роторная обмотка, а роль вторичной обмотки – статорная. ЭДС в механизме создается за счет раздвижения щеток. ЭДС вызывает в статоре ток, который создает и определяет момент вращения механизма.

Для регулировки скорости в коллекторную цепь вводится отсутствующая мощность. Используя трансформаторную связь между обмотками, мощность статора возвращается в электрическую сеть, создавая эффект, позволяющий регулировать количество оборотов вала в экономном режиме. При раздвижении щеток на определенное расстояние частота вращения соответственно увеличивается или уменьшается.

Читать еще:  Как отремонтировать люминесцентную лампу

Если щетки, соответствующие своим фазам, смещаются, ЭДС изменяется по фазе. Это дает возможность регулирования cosφ. Его качество повышается, когда значение скорости меньше синхронной, а щетки смещаются в противоположную направлению движения ротора сторону.

Электродвигатели, работающие от трехфазной сети, чаще всего применяются в полиграфии (на ротационных машинах), текстильной и легкой промышленности (на прядильных станках), металлургии (на металлорежущих станках).

Основной недостаток трехфазных агрегатов – плохие коммутационные условия. Это вызывает трудности при получении трансформаторной ЭДС, поскольку повышенная мощность приводит к увеличению магнитного потока. Поэтому в редких случаях для повышения ЭДС и экономичного регулирования количества оборотов вала в цепь вводится асинхронный электродвигатель.

Однофазные асинхронные двигатели

В различных бытовых и промышленных приборах широкое распространение получили однофазные асинхронные двигатели малой мощности. Однофазные асинхронные двигатели имеют на статоре рабочую обмотку, подключаемую к однофазной сети переменного тока, и вспомогательную (пусковую), которая чаще всего соединяется с однофазной сетью переменного тока кратковременно только в период пуска двигателя.

Роторная обмотка, как правило, выполняется коротко-замкнутой в виде беличьей клетки. (В качестве однофазного асинхронного двигателя может быть использован трехфазный двигатель с отсоединенной одной из фаз статора. Мощность, развиваемая таким электродвигателем при однофазном включении, составляет 50-60% номинальной мощности двигателя при трехфазной схеме включения.)

Отличительной особенностью однофазных двигателей от трехфазных является создание статором не вращающегося, а пульсирующего поля и пульсирующей МДС. Это пульсирующее магнитное поле может быть условно разложено на два круговых поля, вращающихся в противоположные стороны с одинаковой скоростью. Амплитуда каждого из этих полей равна половине амплитуды пульсирующего поля. Для лучшего понимания принципов работы однофазного двигателя его можно заменить двумя одинаковыми трехфазными двигателями , роторы которых закреплены на одном валу, а обмотки статора соединены последовательно с различным порядком следования фаз. В свою очередь эти два двигателя можно заменить одним, имеющим на статоре две последовательно соединенные трехфазные обмотки с различным чередованием фаз и общий ротор.

Двигатели с пусковой обмоткой являются наиболее распространенными среди однофазных двигателей. Для создания вращающегося поля в этих двигателях на статоре кроме основной обмотки размещается вспомогательная пусковая обмотка. Рабочая обмотка занимает 2/3 полюсного деления, пусковая — 1/3, пространственный сдвиг между осями обмоток — 90° (электрический угол). Асинхронный конденсаторный двигатель имеет на статоре две одинаковые рабочие обмотки, занимающие по половине полюсного деления и смещенные в пространстве на 90° (электрический угол), как и в предыдущем случае.

Последовательно с одной из обмоток включается конденсатор, емкость которого рассчитывается так, чтобы обеспечить создание кругового поля при номинальной нагрузке (двигатель с рабочей емкостью). Однако емкость, подобранная по рабочему режиму, оказывается недостаточной для подавления обратного поля при пуске. Поэтому в ряде случаев на время пуска параллельно с рабочим конденсатором включается дополнительный пусковой (двигатель с пусковой и рабочей емкостью). Использование материалов в конденсаторных двигателях, их КПД и коэффициент мощности значительно выше, чем у двигателей с пусковой обмоткой.

Двигатель с экранированными полюсами имеет на статоре явно выраженные полюсы с однофазной обмоткой и ротор с короткозамкнутой обмоткой. В этом двигателе каждый полюс разделен осевым пазом на две неравные части. Меньшая часть полюса охватывается короткозамкнутым витком и образует экранированную часть полюса. Для увеличения пускового момента двигателя между полюсными наконечниками устанавливаются магнитные шунты. Поле двигателя эллиптическое (содержит наряду с прямым значительное обратное поле), поскольку потоки, проходящие через основную и экранированную части полюса, сдвинуты в пространстве и во времени на недостаточно большие углы. Тем не менее, пусковой момент достигает величины 0,2-0,5 номинального.

Потери в короткозамкнутых витках статора такого двигателя довольно значительны и практически не зависят от вращающегося момента. В соответствии с этим потребляемая мощность мало меняется при работе как на холостом ходу, так и при номинальном режиме. Кроме того, из-за больших потерь температура обмотки также практически не зависит от нагрузки. Благодаря этому обмотка статора может длительное время находиться под напряжением даже при неподвижном роторе. Двигатели допускают частые пуски и внезапные остановки.

Ввиду сравнительной простоты конструктивного исполнения, отсутствия дорогостоящих фазосмещающих элементов, высокой надежности работы двигателя с расщепленными полюсами нашли применение в приводах вентиляторов, магнитофонов, проигрывателей и др. Двигатели с экранированными полюсами изготовляются серийно на мощности от долей ватта примерно до 300 Вт.

Промышленность выпускает серийно однофазные двигатели с пусковой обмоткой и однофазные конденсаторные двигатели в рамках единой серии асинхронных двигателей . Мощность этих двигателей достигает 750 Вт: двигатели с пусковой емкостью типа 4ААУ (вместо старой серии АОЛГ); двигатели с пусковым сопротивлением типа 4ААЕ (вместо старой серии АОЛБ); двигатели с рабочей емкостью типа 4ААТ (вместо старой серии АОЛЕ); двигатели с пусковой и рабочей емкостями типа 4ААУТ (вместо старой серии АОЛД).

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ОДНОФАЗНОГО ДВИГАТЕЛЯ

После изучения данной главы студент должен:

• особенности и отличительные признаки устройства и принципы работы однофазного асинхронного двигателя;

  • • решать задачи, связанные с выбором пускового устройства для однофазного двигателя;
  • • применять теоретические знания при подключении трехфазного двигателя в однофазную сеть;
  • • проводить расчеты по подбору емкости пускового конденсатора для работы двигателя в однофазной сети;
  • • спецификой подбора однофазного двигателя для технологического процесса;
  • • навыками разрешения проблем, возникающих при работе с однофазными двигателями.

Однофазный асинхронный двигатель

В тех случаях, когда потребление электрической энергии невелико (жилые дома, торговые предприятия и т.д.) или когда использование трехфазной сети затруднительно, применяются однофазные электрические сети. При этом возникает необходимость использования однофазных двигателей переменного тока. Их мощность, как правило, невелика (до 10 кВт) [8].

Конструктивно однофазный двигатель не отличается от трехфазного. Ротор выполнен подобно трехфазному — с короткозамкнутой обмоткой, а статор имеет однофазную обмотку (рис. 4.1). В ней создается пульсирующее переменное магнитное ноле Ф (рис. 4.2). Это магнитное поле, изменяющееся от +Ф до -Ф, можно заменить на два вращающихся в противоположные стороны с одинаковой скоростью Ф> и Ф2 (рис. 4.3). Поля вращаются с частотой питающего тока со = 2nfx/p = const.

Рис. 4.1. Схема однофазного двигателя только с рабочей обмоткой

Рис. 4.2. Изменение магнитного поля в обмотке однофазного ЭД

При неподвижном роторе (в момент пуска п = 0) эти поля создают одинаковые по величине, но разные по знаку моменты и -М2; | М <= |-М2|.

Суммарный момент М = — М2 при пуске равен нулю, и ротор не может

самостоятельно запуститься (начать вращаться).

Примем поле, вращающееся по часовой стрелке, за прямое, а против часовой стрелки — за обратное.

Рис. 4.3. Условное замещение магнитного поля статора на две составляющие

По абсолютной величине прямой момент М, равен обратный момент равен

где /2 и Г2 токи в роторе от прямого и обратного магнитных полей; ср2 и ср2 — углы сдвига между током и ЭДС ротора от прямого и обратного магнитных полей, соответственно.

Если ротор привести во вращение в ту или иную сторону, то один из моментов будет больше другого. Допустим, ротор раскрутили по часовой стрелке, и скольжение от прямого вращения достигло величины $пр = 0,05, т.е.

Так как /2 пр =f • s, го частота тока в роторе от прямого магнитного ноля будет

Вследствие этого индуктивное сопротивление ротора от прямого поля

мало, а следовательно, ток ротора /2 и cos(p2 большие, значит, и прямой момент М, большой.

Обратное скольжение большое (почти в 40 раз больше прямого), следовательно, частота тока ротора от обратного поля будет большой:

Из этого следует, что индуктивное сопротивление (4.1) от обратного поля большое, а значит, ток ротора /2 и cos(p2 малы и обратный вращающий момент М2 мал.

Читать еще:  Запуск 3х фазного двигателя от 220 Вольт

Возникают условия, при которых прямой момент больше обратного (М, > М2), и двигатель начнет вращаться (работать). Это можно проследить и на графике моментов (рис. 4.4).

Как видно из графика, при s = 1 (ротор неподвижен) результирующий момент однофазного двигателя в момент пуска равен нулю. Но если ротор привести во вращение в любую сторону, то результирующий момент (М) отличен от нуля, и ротор начнет вращаться.

Рис. 4.4. График моментов от прямого (+Ф,) и обратного (-Ф2) магнитных полей

Чтобы ротор начал вращение, необходимы дополнительные меры но созданию пускового момента. Эти меры направлены на усиление прямого поля при пуске и ослабление обратного, чтобы при s = 1 выполнялось условие

Наилучшие условия пуска достигаются при условии, когда обратное поле при пуске полностью отсутствует, т.е. М2 = 0.

Разные виды однофазных двигателей различаются друг от друга способами создания пускового момента, отличного от нуля. Наиболее распространенным способом является устройство второй (пусковой) обмотки, сдвинутой в пространстве на 90° относительно рабочей (рис. 4.5).

Рис. 4.5. Схема однофазного двигателя

Последовательно с пусковой обмоткой включается фазосдвигающий (фазосмещающий) элемент (сопротивление) Z,, для создания сдвига фаз (р между токами рабочей (/р) и пусковой (/„) обмоток (рис. 4.6).

Путем построения векторных диаграмм можно определить, какой вид сопротивления (активное, индуктивное или емкостное) даст наибольший угол между токами и, следовательно, наибольший пусковой момент в рабочей и пусковой обмотках.

Учитывая, что сопротивления самих обмоток имеют активную и индуктивную составляющие, можно заключить, что при Zn=R и Zn = jwL не может быть получен максимально необходимый сдвиг между рабочим и пусковым токами |/ = 90° (рис. 4.7).

Для получения максимального пускового момента сдвиг токов в 90° может быть достигнут только при емкостном сопротивлении.

Обычно емкостное сопротивление включается в пусковую обмотку последовательно (рис. 4.8). После того как ротор наберет определенную скорость вращения, пусковая обмотка отключается. Двигатель продолжает работать только с рабочей обмоткой.

Пусковой конденсатор не должен быть включен постоянно. Большие токи могут сжечь рабочую обмотку, выполненную из более тонкого провода, чем пусковая, но с большим, чем у пусковой, числом витков.

Рис. 4.6. Смещение токов в пусковой и рабочей обмотках фазосдвигающим устройством

Рис. 4.7. Векторные диаграммы определения типа пускового сопротивления

Рис. 4.8. Схема включения пускового сопротивления и механическая характеристика однофазного двигателя:

а — с пусковым сопротивлением (конденсатором); б — после отключения пускового сопротивления

Обычно стремятся, чтобы Мп = (1,3-Н,4)МН.

Для создания больших пусковых моментов при тяжелых условиях пуска устанавливают конденсатор и в рабочую обмотку (рис. 4.9). После разгона двигателя пусковой конденсатор отключается и в работе остается только рабочий (рис. 4.10).

Рис. 4.9. Схема с пусковым и рабочим конденсаторами

Рис. 4.10. Механические характеристики запуска ЭД

Обычно Сп = (2,5-^3,0)Ср При этом достигается кратность пускового момента р= 1,3^ 1,4.

Рабочую емкость нельзя делать большой, так как она может вызвать перегрев обмоток, а, следовательно, обмотку пришлось бы делать из провода большого диаметра, что увеличивает габариты двигателя.

Частоту вращения однофазного асинхронного двигателя можно регулировать теми же способами, что и трехфазных асинхронных двигателей — частотой тока, числом пар полюсов, введением дополнительного сопротивления в цепь ротора, изменением напряжения и т.д.

Недостатки однофазного двигателя:

  • — максимальный момент (Мтах) однофазного двигателя зависит от активного сопротивления ротора (г2) — чем больше г2, тем меньше Мтах;
  • — КПД и coscp однофазного двигателя ниже, чем у трехфазных двигателей;
  • — пусковой и максимальный моменты ниже, чем у трехфазных двигателей той же мощности. Следовательно, и кратности моментов р и рк меньше;

хуже использование материалов — при одинаковых габаритах мощность однофазного двигателя составляет не более 50—60% от номинальной мощности трехфазного.

Однофазный асинхронный двигатель

Однофазный асинхронный двигательэто маломощный двигатель (до 1500 Вт) который применяется в установках, в которых практически отсутствует нагрузка на валу в момент пуска, а также в тех случаях, когда питание двигателя может быть осуществлено только от однофазной сети. Чаще всего такие двигатели, применяют в стиральных машинах, небольших вентиляторах и т.д.

Однофазный двигатель схож по строению с трехфазным асинхронным двигателем, различием является количество фазных обмоток, у однофазного не три, а две обмотки – пусковая и рабочая, причем постоянно работает только одна обмотка – рабочая.

Для того чтобы ротор асинхронного двигателя пришел в движение, статорная обмотка должна создать вращающееся магнитное поле. В трехфазном двигателе, такое поле создается благодаря трехфазной обмотке. Но рабочая обмотка однофазного двигателя создает не вращающееся, а пульсирующее магнитное поле. Это поле можно разложить на два – прямое и обратное. Прямое поле вращается с синхронной скоростью n1 в направлении вращения ротора и создает основной электромагнитный момент. Скольжение ротора относительно прямого поля равно

Обратное поле, вращается против ротора, поэтому частота вращения ротора отрицательная, относительно этого поля

Каждое поле наводит ЭДС, благодаря которым по ротору начинают протекать токи. Частоты этих токов пропорциональны скольжению (fт=f·s), , а из формул выведенных выше, можно сделать вывод, что частота тока наводимого обратным полем, намного больше частоты тока прямого поля. В связи с этим, индуктивное сопротивление, которое увеличивается с ростом частоты, приобретает большое значение и становится намного больше активного сопротивления. Поэтому ток обратного поля, является практически индуктивным и оказывает размагничивающее действие на поток обратного магнитного поля. Как следствие, момент, создаваемый этим полем, невелик, и направлен против вращения ротора.

В момент, когда ротор неподвижен, ось симметрии между этими двумя полями, также неподвижна, а значит, не создается вращающего магнитного поля, и как следствие, двигатель не работает. Чтобы привести его в движение, нужно прокрутить ротор, для того чтобы ось симметрии сместилась. Но выполнять это механически не имеет смысла, поэтому для того, чтобы запустить однофазный двигатель, создали пусковую обмотку. Пусковая обмотка совместно с рабочей, создает вращающееся магнитное поле, необходимое для запуска двигателя. Для этого необходимо чтобы МДС обоих обмоток были равны, а также угол между ними составлял 90°. Кроме того, необходимо чтобы и токи в этих обмотках, были смещены на 90°. В этом случае создается так называемое, круговое магнитное поле, при котором результирующий электромагнитный момент максимален. Если же, эти условия выполнены с отклонениями, то создается эллиптическое магнитное поле, при котором момент ниже, из-за увеличенного тормозного момента обратного поля.

В реальных условиях пуск однофазного двигателя осуществляется с помощью одновременного нажатия на кнопки, подающие питание и подключающие пусковую обмотку к цепи.

Для того, чтобы создать фазовый сдвиг в 90° между токами рабочей и пусковой обмотки, используют фазосмещающие элементы (ФЭ). Это может быть активное сопротивление, катушка или конденсатор. Большое распространение получили однофазные двигатели с активным сопротивлением в качестве фазосмещающего элемента. Увеличение сопротивления пусковой обмотки, достигается с помощью уменьшения сечения провода, а так как эта обмотка работает короткий промежуток времени в момент пуска, то это не причиняет обмотке вреда.

Но, активное сопротивление, также как и индуктивное, не создает требуемого смещения в 90° между токами, зато такое смещение создает конденсатор. Емкость этого конденсатора, подбирают таким образом, чтобы ток пусковой обмотки, опережал по фазе напряжение на некоторый угол, который необходим для того, чтобы смещение между токами стало 90°. Благодаря этому, создается круговое магнитное поле. Но, конденсаторы применяются в качестве фазосмещающего элемента реже, потому что для обеспечения смешения в 90°, нужен конденсатор, большой емкости, и как правило, относительно высокого напряжения. Кроме того, габариты этого конденсатора, велики, что также играет роль.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×