Kontakt-bak.ru

Контракт Бак ЛТД
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обрыв нуля в однофазной сети

Обрыв нулевого провода в трехфазной и однофазной сетях

Как известно, электрический ток течет по замкнутой цепи, выполняя при этом работу. Домашняя электросеть является одним из множества ответвлений глобальной сети энергоснабжения. Это означает, что для работы домашних электроприборов необходимо, чтобы было подведено минимум два проводника, по которым будет течь ток.

По рациональным причинам, описанным ниже, их называют фазным и нулевым рабочим проводом (N). В данной статье разъясняется функция рабочего нулевого проводника, и описываются проблемы, возникающие, если происходит аварийный обрыв нуля.

Практически все взрослые люди знают, что нулевой проводник сети, работающий в штатном режиме, не представляет угрозы при прикосновении, так как на нем нет опасного для здоровья напряжения. Но, это не означает, что через провод ноля не течет ток – нужно четко различать эти понятия. В идеальной цепи ток фазного и нулевого проводника идентичен.

Функция рабочего ноля

В процессе изучения электричества ученые поняли, что земля (грунт, геологические породы и вся планета целиком) является неплохим проводником электрического тока. В принципе, для энергоснабжения было бы достаточного одного провода с электрическим потенциалом, а грунт бы выполнял функцию обратного участка цепи.

Кривая зависимости удельного сопротивления грунта от влажности

Но прогресс не пошел по этому направлению из-за необходимости создания систем заземления с большой контактной площадью, и при этом имеющих нестабильные характеристики и требующие постоянного обслуживания и защиты от влияния среды и электролитических процессов.

Поэтому дешевле и надежнее было провести два проводника, чтобы создать замкнутую цепь. Было решено один из проводов электрически соединить с землей, то есть, потенциал на данном проводнике относительно грунта равняется нолю. Данное решение было принято в целях электробезопасности ради зануления корпусов электрооборудования.

Схематическое отображение заземления и зануления

В наше время, функции защиты (зануления) выполняет защитный заземляющий проводник PE, а провод ноля используется только для протекания рабочего тока цепи. Термин «фазный провод» не имел бы смысла в однофазной сети, но, поскольку синусоидальное напряжение смещено по фазе относительно аналогичного параметра у других проводников электросети, данное название принято в обиходе.

В системах электроснабжения бытовых потребителей рабочий нулевой проводник всегда имеет контакт с землей (исключение: изолированная нейтраль). В цикле статьей о заземлении подробно описаны принципы разделения совмещенного нулевого провода на рабочий и защитный ноль в различных системах. Это означает, что напряжение относительно земли на рабочем ноле в однофазных и трехфазных системах нулевое (безопасное для людей и оборудования).

Схематическое отображение энергоснабжения жилого дома по системе заземления TN-C-S

Аварийное отключение рабочего ноля

Электрики знают, что и на нуле небольшой потенциал все же есть, и он зависит от величины протекающего тока (I) и удаленности от точки заземления. Чтобы понять данный процесс, нужно вспомнить задачу из школьного курса физики о расчете напряжений (делитель U1, U2 ) в точке соединения двух последовательно включенных сопротивлений (R1, R2). В нашем случае это будут сопротивления кабеля фазы и подключенной нагрузки (R1,) и R2 участка нулевого провода до точки заземления.

Делитель напряжения, образующий ноль в розетке

Если сопротивление нагрузки (R1) многократно превышает аналогичный параметр (R2) участка рабочего ноля, то потенциал на контакте ноля в розетке будет ничтожно малым. При большой протяженности рабочего нуля до точки заземления, напряжение U2 гипотетически рассчитываем по школьной формуле из рисунка выше. Но, если происходит обрыв нулевого провода, то при включенном в домашнюю сеть электрооборудовании на любом контакте ноля каждой розетки будет фазное напряжение U1.

При обрыве ноля индикатор будет показывать две фазы в розетке

Казалось бы, при современных системах заземления, исключающим зануление, пропажа нуля, не несет никакой опасности, ведь корпусы оборудования надежно заземлены, а сами электроприборы перестанут работать из-за прекращения тока. В однофазной домашней электрической сети будет именно так, если ноль оторвался сразу при вводе в дом.

Влияние обрыва ноля на потребителей

Но, если случается обрыв нуля где-то на трехфазной линии, то на оставшейся цепи, от разрыва до дома формируется напряжение подключенной нагрузкой от других фаз соседних потребителей электроэнергии. Если бы ток нагрузки всех трех фаз был идентичен, то сформировавшийся потенциал на нулевом проводнике был бы близким к нолю.

В реальности, при аварийных ситуациях нагрузка на фазах неравномерная, что означает смещение напряжения на нулевом проводнике в сторону большего фазного тока. Соответственно, разница потенциалов между образовавшимся нулем и двумя другими фазами окажется значительно большей, чем обычное напряжение сети электропитания.


Поэтому обрыв нулевого провода для бытовых электроприборов означает провал напряжения при попадании на фазу с наибольшим количеством подключенных потребителей, или превышение потенциалов выше допустимых параметров электропитания, если не повезет оказаться на двух других фазах.

Способы защиты от обрыва ноля

Для уменьшения потенциала на нулевом проводнике и соответственно, ради увеличения эффективной разницы между штатным фазным напряжением сети и нулем применяют многократное повторное заземление совмещенного ноля. Эта мера также предназначена для уменьшения негативных последствий для потребителей вследствие обрыва нулевого проводника в сети электроснабжения.

Стрелкой указано повторное заземление ноля (PEN) на опоре воздушной линии

К сожалению, во многих провинциальных регионах, особенно в сельской местности, сопротивление повторного заземления оказывается недостаточным для надежной защиты от превышения напряжения, возникающего при обрыве нулевого провода. К тому же, на воздушных линиях сети энергоснабжения, преобладающих в сельской местности, обрыв нуля происходит гораздо чаще, чем в городских подземных или скрытых (защищенных) линиях электросети.

Обычный потребитель может влиять на качество электропитания на вводе лишь при помощи юридических инструментов – жалоб, петиций, судовых исков, и т д. Но в домашней сети, сохранить приемлемый уровень качества электроэнергии можно при помощи стабилизаторов, а обезопаситься при аварийных ситуациях получиться, применив реле напряжения или обладающие дополнительными функциями дифавтоматы.


Работа электромеханического УЗО при обрыве нуля

По конструктивному исполнению УЗО бывают электромеханические или электронные. Основная разница между ними состоит в том, что электромеханическое УЗО способно выполнить свою защитную функцию при часто встречающемся обрыве нулевого провода, а электронное в данной ситуации неработоспособно, так как нуждается в питании для работы платы усилителя, а при обрыве нуля это питание не поступает.

Рассмотрим как себя будет вести электромеханическое УЗО при обрыве нуля со стороны питающей сети.

В обычном режиме, когда и фаза и ноль подключены к УЗО и нет утечки тока сети и в нагрузке после УЗО токи фазным и нулевом проводах равны и направлены встречно, наводимые ими магнитные потоки взаимокомпенсируют друг друга и ток в обмотке управления равен нулю.

Предположим, что со стороны питающей сети произошёл обрыв нулевого провода. В данном случае, если нет пробоя изоляции на корпус и человек не касается токоведущих частей прибора — ничего не произойдёт. Ток в цепи нагрузки протекать не будет, так как нулевой провод оборван и цепь разомкнута, в сердечники дифференциального трансформатора тока магнитный поток наводится не будет, УЗО останется включенным, как и в обычном режиме. Те есть внешне ничего не изменится, но через фазный провод к нагрузке будет поступать опасный для жизни потенциал.

В случае пробоя изоляции на корпус прибора произойдёт вынос фазного потенциала на корпус прибора, возникнет ток утечки по фазному проводу через корпус прибора и защитный провод PE на землю. Через полюс УЗО, к которому подключён фазный провод, потечёт ток утечки, который будет наводить сердечники дифференциального трансформатора тока и компенсированный магнитный поток, поскольку ток во втором полюсе к которому подключен нулевой провод отсутствует. Под действием некомпенсированного магнитного потока в обмотке управления будет наводится ток, если величина этого тока превысит порог срабатывания, от половины до одного значения уставки, сработает электромагнитное реле, которое воздействуя на механизм расцепителя отключит силовые контакты УЗО от питающей сети. Аналогичным образом если человек случайным образом коснётся фазного провода, через его тело потечёт ток утечки на землю, в полюсе УЗО, через который подключен фазный провод, потечёт ток утечки, который будет наводить магнитный поток в сердечнике. В обмотке управления возникнет ток, приводящий к отключению контактов УЗО от питающей сети.

Читать еще:  Асинхронные электродвигатели с фазным ротором

Подведём итог

Электромеханическое УЗО не защищает от обрыва нуля в однофазной сети, однако оно сохраняет свою работоспособность и продолжает выполнять свои защитные функции. Важно понимать, что если нет утечки тока с фазы на землю или защитный PE проводник, при пробое изоляции или касанием человеком фазного провода, то при обрыве нулевого провода УЗО не сработает.

Откуда в розетке 380в при обрыве нуля — наглядно, доступно, без формул.

Наверняка у каждого из вас, хотя бы раз в жизни сгорали бытовые приборы от перенапряжения. При этом многие слышали, что подобное не редко случается из-за обрыва ноля.

Давайте наглядно без формул, векторных диаграмм, смещений нулевых точек и т.п., с точки зрения обывателя попытаемся разобраться, каким же образом напряжение 380в, вместо привычных 220в, может оказаться в ваших розетках.

Ведь действительно возникает логичный вопрос, как это так, оборвался или отгорел один из проводов, а напряжение ни то что не пропадает, а становится даже больше.

Понимание этого процесса будет полезно каждому потребителю, дабы потом не возникало вопросов, зачем электрики пытаются «всунуть» в электрощиток, непонятные реле, стоимостью несколько тысяч рублей.

Чтобы доступно разобраться в сути этого явления, давайте вспомним разницу между последовательной и параллельной схемой подключения электроприемников.

При параллельном подключении, фазный и нулевой проводники одновременно приходят ко всем потребителям в цепи. Нарисуем такую схемку, где этими потребителями будут обыкновенные лампочки накаливания.

На входе напряжение составляет 220в. При таком подключении, на каждой лампочке напряжение будет одинаковым, и при достаточном сечении проводников и малой нагрузке, не будет сильно отличаться от вводного.

При этом отключение или включение каждой лампочки по очередности, не сильно скажется на его значениях. Именно по такой схеме и подключены все розетки в ваших квартирах.

Однако если напряжение будет одинаковым, ток в цепи будет разным. Общее его значение складывается из суммы токов проходящих через лампочку №1 и №2.

Вы можете включать и более мощные приборы (лампы 200Вт, чайник), и все будет прекрасно работать.

Схема последовательного подключения несет в себе уже существенные изменения. Здесь питающий проводник (это может быть фаза или ноль), сначала приходит на первую лампочку, а далее от нее уходит на следующую.

Только после этого он возвращается на вводной автомат или в общую сеть.

Не важно количество токоприемников, их может быть 2,3,4 и более. Главное, чтобы они были строго подключены один после другого.

Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза.

При этом общее вводное напряжение будет складываться из суммы падений напряжений на лампе №1 и лампе №2. То есть, 110в на одной и 110в на другой. Кстати, такой казалось бы недостаток, можно очень хитро использовать несколькими способами.

Напомню, что в параллельной схеме, U везде было одинаковым, не важно в какой точке. Здесь же одинаковым будет ток, при том в любой части электрической цепи I=I1=I2.

Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности. Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу.

На лампочке 100Вт будет напряжение 146В и она будет гореть довольно ярко. В то же время более мощная 200 ваттная будет еле светиться.

Связано это с тем, что падение напряжения напрямую зависит от сопротивления потребителя. На более мощных приборах сопротивление маленькое.

Вот примерные данные по стандартным лампочкам, предназначенным для работы в сети 220В:

Обрыв нуля в однофазной сети

Обрыв нулевого провода

Головная боль любого электрика — пропадание нуля. При его отсутствии все потребители окажутся без электричества. Нулевой провод появляется от средней точки обмоток высоковольтного трансформатора, соединенных в звезду. Эту точку разводят на все шкафы и щитки, а также от этой точки тянется шина заземления. Нулевой провод наиболее важен для безопасности электрооборудования.

Переменное напряжение в сети имеет синусоидальную форму. Три фазы сдвинуты относительно друг друга на угол 120*. Это немного непонятно, поэтому эти кривые проилюстрированы здесь. Если измерить напряжение стандартным вольтметром, это значение между фазным проводом и нулевым будет 220 В, но это среднее значение за половину периода. Тестер не осциллограф, а только измеритель среднего. На самом деле мгновенные значения пиковых напряжений больше 220 В в квадратный корень из 2. Иными словами, 220*2^0,5=311 В.

Синусоида напряжения говорит, что среднее значение напряжения 220 В, пиковое значение 311 В. Измерения ведутся относительно нулевой оси абсцисс.

Форма кривой между двумя фазами также является синусоидой. Среднее значение линейного напряжения 380 В, а пиковое 536 В.

На взгляд простого обывателя непонятно почему при пропадении нуля, напряжение в сети должно возрасти. Логика подсказывает совсем обратное — полное пропадение напряжения. И действительно, если отключить нулевой провод на вашу квартиру, то свет потухнет и ничего страшного с оборудованием не случится. Но здесь речь идет о обрыве нуля на подстанции или на распределительных поэтажных квартирных щитах.

Разматывать клубок начнем с самого начала — счетчика активной энергии. На первый взгляд — стандартный прибор, но здесь есть подводный камень. В счетчике есть две обмотки — напряжения, включаемая между фазой и нулем, и тока, включаемую в разрыв фазы. Напряжение между точками А и В — 220 В, полностью падающие на обмотке напряжения.

При обрыве нуля, фаза протечет через обмотку напряжения и потечет к потребителю. Если потребитель возьмет индикатор и ткнет в розетку, то обнаружит сразу две фазы, но при этом вольтметр покажет стабильный ноль. Возможно, от данной информации у многих мозг закипит, но здесь ничего волшебного нет. Все дело в счетчике.

При обрыве фазы все более логично — нигде ничего наблюдаться не будет.

Теперь о главном. При обрыве нуля до счетчиков, которые запитывают две и более квартир возникает интересный процесс. Оба счетчика останутся соединенными по нулевому проводу, но нуля не будет. Ситуацию усугубит то, что счетчики для равномерной загрузки трансформатора запитывают разными фазами. Получится, что одна фаза от первого счетчика пройдет через обмотку напряжения и сталкнется с другой фазой от второго счетчика, также прошедшей через обмотку напряжения. Короткого замыкания не получится, т.к. две последовательно включенные обмотки напряжения, работающие при напряжении 220 В, будут запитаны от 380 В, т.е на каждую обмотку придется по 190 В. Это даже меньше заявленного, что для обмоток приемлимо. Для потребителя окажется, что на одном проводе будет потенциал в 220 В, а на втором проводе потенциал 190 В. И вроде все также неплохо, ведь на первый взгляд напряжение в квартире станет равным 220 — 190 = 30 В, но это не так.

В зависимости от загрузки нолевая точка сместиться к более загруженному потребителю и он получит вместо 220 В, значительно меньше, например на 100 В меньше, т.е 120 В, а вот его сосед получит 380 — 120= 260 В. Если же один потребитель будет вообще не загружен, то он и получит в свою систему все 380 В. Это не значит, что нужно запускать все приборы чтобы не допустить перекоса. Обрыв ноля — аварийный случай и встречается редко.

Часто в литературе описывается сдвиг фаз, при котором из-за несимметричности фаз, сдвигается точка нулевого потенциала и вместо нуля на проводе будет висеть 5-10 В, относительно провода заземления. В принципе, это нормально. Невозможно подключить равномерно множество однофазных потребителей с тем, чтобы загрузка была идеально симметричной. Лично я измерял ток в заземляющем проводе от высоковольтного трансформатора к заземлителям и он составлял 4 А. Сама по себе неравномерность фаз — норма.

В качестве эксперимента можно взять два трансформатора и подключить их последовательно между двумя фазами. Провод от средней точки обоих трансформаторов нужно вначале подключить к нулевому проводу. Нужно убедиться в напряжении на трансформаторах. Напряжение должно составлять 220 В. Если отключить нулевой провод и промерить напряжения на трансформаторах, то здесь и будет фокус — напряжения будут отличаться в том случае, если нагрузки на трансформаторах будут различными, или, если мощности трансформаторов будут различными, т.к. различным будет сопротивление первичных обмоток.

Результаты опыта следующие — обрыв ноля вызывает перекос фаз между всеми потребителями, смещая нулевую точку в зависимости от загрузки этих потребителей. Чем больше нагрузка, тем меньшее напряжение придет на квартиру.

Сработает ли УЗО при обрыве нуля в однофазной сети

Напряжение в розетках при прикосновении к токоведущим частям или нарушении изоляции между этими элементами и корпусом является опасным для здоровья, а иногда и для жизни. Для защиты людей ПУЭ предусматривает установку устройств защитного отключения.

Эти приборы подключаются к фазному и нулевому выводам вводного автомата, но во многих зданиях электропроводка служит много лет и в ней возможен обрыв одного из проводов и при нарушении контакта в цепи нулевого проводника сохраняется опасность от поражения электрическим током. Поэтому возникает вопрос — возможна ли работа УЗО при обрыве нуля?

Для надёжной работы необходимо выбрать не только номинальный ток устройства, который должен соответствовать току автоматического выключателя линии и ток утечки, при котором происходит срабатывание защиты. Не менее важно установит такой прибор, который будет работать при обрыве нуля.

Почему не каждое УЗО сработает при обрыве нуля

Есть два вида устройств защитного отключения, отличающиеся по конструкции.

Электромеханическое УЗО

Внутри этого аппарата находится трансформатор тока с тремя обмотками — двумя первичными, включёнными встречно и подключёнными к нулевому и фазному проводникам, и вторичной, к которой подключается катушка электромагнитного расцепителя. В нормальной ситуации ток в обоих первичных обмотках одинаковый, а во вторичной катушке отсутствует.

При прикосновении человека к элементам, находящимся под напряжением, появляется ток утечки, равенство нарушается и появляется ток во вторичной обмотке. Это приводит к срабатыванию защиты. Такая конструкция не нуждается в дополнительном источнике питания и УЗО сработает при обрыве нуля.

Электронное УЗО

Устройство такого типа имеет более сложную конструкцию. Внутри аппарата находится электронная плата с усилителем, для работы которого необходимо постоянное наличие напряжения на клеммах прибора.

Это не является проблемой при отсутствии напряжения в сети или обрыве фазного питающего провода. В этих случаях прикосновение к токоведущим частям не является опасным.

Хуже ситуация при обрыве нейтрали. Напряжение между нулевой и фазной клеммами отсутствует и питание на плату не поступает, поэтому работа УЗО при обрыве нуля невозможна.

Кроме того, электронная начинка, в отличие от механической, чувствительна к перепадам напряжения и высоковольтным разрядам, появляющимся в сети во время грозы. Выход из строя электроники делает невозможным срабатывание защиты.

Информация! На передней крышке электронного УЗО в схеме устройства есть треугольник, являющийся символом усилителя.

Отгорание нулевого провода в трёхфазной сети

Большинство многоквартирных домов подключается к трёхфазной сети при помощи четырёх проводов (три фазных и нейтраль). Если к дому подходят только два провода (ноль и фаза), то они являются ответвлением от трёхфазной линии.

Для защиты жильцов дома обычно устанавливается однофазное УЗО, но в некоторых случаях используются трёхфазные устройства. Работа УЗО при обрыве нуля у обоих видов аппаратов одинаковая, различие заключается в количестве обмоток в трансформаторе тока.

Если обрыв нейтрали в однофазной сети не влияет на исправность оборудования, то отгорание ноля в трёхфазной сети может привести к выходу электроприборов из строя. Это связано с колебаниями напряжения от «0» до «380»В.

Информация! В данной статье описана работа УЗО при обрыве ноля в однофазной сети. Не нужно путать эту ситуацию с отгоранием нуля в трехфазной сети – это разные последствия. УЗО не защитит вашу технику от перенапряжения. Для защиты электроприборов при обрыве нуля в трехфазной сети необходима установка реле напряжения.

Как работают разные типы УЗО при обрыве нуля

Как видно из статьи, устройства защитного отключения разных типов похожи по принципу действия, но отличаются по конструкции и поэтому работа УЗО при обрыве нуля зависит от типа аппарата.

При исправной электропроводке и работе электрооборудования в штатном режиме токи в нулевой и фазной обмотках трансформатора тока одинаковы по величине и направлены встречно друг другу. В результате ток во вторичной обмотке отсутствует. Это равенство может нарушиться в следующих ситуациях:

  • Пробой изоляции на заземлённый корпус оборудования. При коротком замыкании должен отключиться автоматический выключатель, но если ток утечки незначителен, то оборудование остаётся подключённым к сети. При этом ток, протекающий через нулевой проводник, уменьшится на величину тока утечки, равновесие в обмотках нарушится и во вторичной обмотке появится ток. Это приведёт к срабатыванию защиты.
  • Прикосновение человека к токоведущим частям. Если корпус оборудования не заземлён, то при нарушении изоляции он оказывается под напряжением.

Ток утечки, протекающий при этом через тело человека, слишком мал для того, чтобы отключился автомат, но его достаточно для срабатывания УЗО.

Такая ситуация является опасной для здоровья и жизни людей и требует немедленного отключения линии. В штатном режиме УЗО обоих типов сработают одинаково и отключат питание от неисправного электроприбора.

При обрыве нуля электроприборы работать не будут и ток через прибор не идёт, но при нарушении изоляции или прикосновении к фазным проводникам через фазную катушку трансформатора появляются ток утечки, отсутствующий при этом в нулевой катушке, и ток во вторичной обмотке.

Защитные устройства будут при этом работать по-разному:

  • Электромеханическое УЗО . В этом приборе расцепитель подключается непосредственно к трансформатору и срабатывание защиты не зависит от целостности нулевого проводника.
  • Электронное УЗО . В таких устройствах сигнал из трансформатора подаётся не на расцепитель, а на усилитель, которому для питания необходимо подключение к обоим проводам — нулевому и фазному. При обрыве нуля питание в электронной схеме отсутствует и, несмотря на наличие тока во вторичной катушке, срабатывание защиты не произойдёт. Таким образом, комбинация из нарушенной изоляции, электронного УЗО и обрыва нуля является опасной для жизни людей.

Справка! Исправность УЗО любого типа необходимо каждый месяц нажатием кнопки «ТЕСТ».

Вывод

Как видно из статьи, сработает ли УЗО при обрыве нуля, зависит от конструкции этого прибора. Электромеханическое устройство при этом полностью сохраняет свою работоспособность, а электронное перестаёт работать из-за отсутствия питания для работы усилителя.

Поэтому такой защитный прибор является менее надёжным и его целесообразно заменить электромеханическим УЗО.

Обрыв нуля в однофазной сети

Что такое «Отгорание нуля» или обрыв нуля? Что случится если ноль отгорел?

Наверняка каждый хоть раз в жизни слышал, а кто-нибудь даже и сталкивался лично с проблемой, когда в доме/квартире вдруг подскочило напряжение и сгорела техника. Из-за чего повышается напряжение до такого значения, что сгорает бытовая техника? Кого винить в происшествии?

Загадка резкого скачка напряжения кроется в таинственном понятии «отгорание нуля». Что такое «отгорание нуля» и почему именно «отгорание». Каждый знает из школьного курса физики и из окружающей нас бытовой жизни, что в электрической сети есть ноль и есть фаза. И тут многие зададутся вопросом: ну отгорел нуль – значит и розетка не будет работать, нуля ведь нет)). «Отгорание нуля» это профессиональный жаргон электриков, в электротехнике используется термин— обрыв нуля. Можно различить обрыв нуля полным, — это когда контакт с нулевой шиной полностью оборван, но часто встечается неполный контакт, что и вызывает эти самые скачки напряжения.

Так для чего же нужен нулевой проводник? Проводник нуль используется в наиболее распространенной трехфазной схеме «звезда», используемой для бытовых потребителей. Есть еще другая схема построения трехфазных сетей — «треугольник», у которой присутствуют три фазных проводника: А, В, С, но отсутствует четвертый проводник — нулевой. В основном схема «треугольник» используется в промышленных целях.

В схеме звезда используется четыре проводника три из которых фазные и один — нулевой. Таким образом, в многоквартирный дом приходят не два провода фаза и ноль, как некоторые могут думать, а четырехжильный или пятижильный провод (с защитным заземлением РЕ).
Мощный силовой кабель заходит в водный распределительный щит. С этого щита электричество распределяется по подъездам, с подъезда по этажам, с этажей по квартирам. Как правило, в трехфазных схемах принято распределять мощности равномерно для обеспечения баланса работы трехфазной схемы. Например если в подъезде 30 квартир, и в каждую квартиру подводится электричество с напряжением 220В, распределение трех фаз будет таким: фаза А – 10 квартир, фаза В – 10 квартир, фаза С – 10 квартир.

В теории все сделано правильно, и подключение квартир обустроено правильно, но только вот работу чайников/кипятильников/кондиционеров и др. техники между соседями (между фазами) согласовать просто невозможно. Вот и получается так, что один стояк квартир (например 10 квартир на фазе А) может оказаться сильно загруженным, а другой стояк квартир (на фазе В) остается мало задействованным. В такой ситуации происходит дисбаланс (перекос по фазе) нагрузок в трехфазной схеме. В случае если ноль отгорел и на трех фазах нагрузка равномерная, например по 5 кВт на каждой фазе — то у каждого потребителя будет напряжение 220В до тех пор, пока один из потребителей не сделает перекос по мощности на своей фазе. В таком случае у этого потребителя в сети окажется напряжение 380В а на других фазах оно упадет до значений 20В-80В.

Поясним немного, что такое трехфазная схема звезда и как она работает.
Переменные токи каждой фазы в трех одинаковых нагрузках сдвинуты по фазе ровно на одну треть и в идеале компенсируют друг друга, поэтому нагрузка в такой схеме называется трехфазной сосредоточенной нагрузкой. В средней точке напряжение равно нулю. При равномерной нагрузке трех фаз, например, работают трехфазные станки на заводе, потребление энергии одинаково по всем трем фазам. Нуль остается невостребованным, нет дисбаланса. В связи с чем, сечение нулевого проводника можно использовать гораздо меньше используемого по фазе. И вот в квартире используется одна фаза, а в целом по подъезду используется трехфазная схема, соответственно ноль в перекошенной по фазе системе является сильно нагружаемым элементом. Этот ноль находится в щитке на этаже в подъезде. Вот в этом месте он и может отгореть, но не обязательно! Отгорание обычно происходит в слабых местах, например, в плохо обжатом контакте или в неправильно подобранном сечении нулевого кабеля. Но что же все-таки произойдет, если отгорит нуль? В нормальных условиях напряжение в однофазной сети составляет 220 В – и называется фазным напряжением (измеряется между нулем и фазой). В квартиру это напряжение приходит по двум проводам. Когда в трехфазной схеме пропадает нуль (например в подъезде на щитке, где идет распределение фаз А,В и С по квартирам), то на тех концах, где было фазное напряжение (приходило в квартиру 220В) появляется линейное напряжение 380В. Линейное напряжение измеряется между фазами, например между фазой А и В и всегда составляет 380В.

Что делать, чтоб избежать ситуации с отгоранием нуля и как обезопасить себя от последствий обрыва нуля?
Наиболее общими рекомендации могут быть следующими:
— использовать сечение кабеля для соединения нуля в трехфазной схеме звезда не меньше, чем сечение кабеля для фазных напряжений;
— периодически, не реже одного раза в год, осуществлять аудит проводки и мест крепления и, по необходимости, переобжимать места соединения (заменять клеммные колодки, если это необходимо);
— использовать защитные реле, отключающие квартиру от электросети при повышении напряжения больше 250В;

— использовать стабилизаторы напряжения, т.к. стабилизаторы напряжения не только спасают от обрыва нуля (скачок напряжения), но и защищают технику от заниженного напряжения

Для получения более расширенных рекомендаций, особенно в части использования трехфазных сетей в частных домах и коттеджах, и организации правильных схем электроснабжения — рекомендуем обращаться к профессионалам.

Последствия обрыва нулевого провода бытовой электросети 220 вольт

Обычно ответ на вопрос, что же случится при обрыве «фазного» рабочего проводника вашей электросети, затруднений ни у кого не вызывает – при этом, наверное, всем понятно, что в квартире будет полное отсутствие напряжения, и любой электроприбор в такой квартире работать не будет.

Так, что же будет при обрыве «нуля»?

А вот на вопрос, что же случится при обрыве «нулевого» рабочего проводника вашей бытовой электросети – однозначного ответа нет!

Здесь в первую очередь необходимо определиться, про какой «нулевой» проводник мы ведем речь? Когда это магистральный «нулевой» проводник (стояк), проложенный в подъезде многоквартирного жилого дома на несколько квартир, с помощью которого обеспечивается питание всех входных электрощитов этих квартир – то это одна сторона медали. Совсем же иное дело, когда «нулевой» провод идет отдельно лишь к входному электрощиту вашего жилища. Рассмотрим данные случаи более подробно, ибо разница в последствиях при обрыве нулевого проводника для каждого случая – существенна.

Обрыв магистрального «нулевого» проводника для нескольких квартир.

При таком обрыве нулевого (N) проводника на стояке к нескольким квартирам, напряжение в электросети вашей квартиры не исчезнет полностью, а только электросети данных квартир, потеряв свою нейтраль – объединятся в «звезду». Данная ситуация на первый взгляд ничего противоестественного для нас не несет, но в принципе, является достаточно опасной.

Здесь опасность состоит в том, что сеть, потерявшая свою нейтраль, может приобретать самый различный – меняющийся потенциал, потому что не имеет надежного соединения с землей, где потенциал всегда нулевой. Соотношение напряжения и нагрузки в такой сети без «нейтрали» следующее: «чем меньшая нагрузка от потребителей в данной электросети, тем большее в ней напряжение».

К примеру, когда в одной из квартир одновременно работает стиральная машина, обогреватели и еще некоторые мощные потребители электроэнергии, а в вашей квартире, расположенной рядом – в это время работает лишь телевизор и настольная лампа (люди отдыхают), то в случае обрыва «0» на стояке к этим квартирам, в вашей квартире, напряжение существенно возрастет. Оно может даже сравнится с линейным напряжением трехфазной сети, и в этом случае составит 380В!

Во избежание подобной и достаточно опасной ситуации в вашей квартире, соревноваться с соседями, у кого больше электропотребителей будет включено в сеть не обязательно. Просто, установите к себе во входной электрощиток, индивидуальный ограничитель перенапряжения, который в случае появления напряжения в вашей электросети, которое существенно превышает номинальные для нее значения – мгновенно отключит вашу квартиру от энергопитания.

Обрыв индивидуального нулевого вводного провода электросети.

Здесь в сравнении со случаем обрыва нулевого магистрального проводника, описанного выше – опасность совсем другая.

Электроприборы в такой электросети работать не будут, ибо напряжения в ней пропадет совсем. Однако, хотя «нуля» в вашей электросети нет, но «фаза» по прежнему остается, и она будет даже в разъемах розеток – где ранее был «нуль». Такое положение связано с тем, что потеря напряжения на любой нагрузке, к примеру, на электролампочке – равняется нулю, и «фаза» со своим напряжением спокойно переходит в бывший «нулевой провод» – давая там потенциал в 220В.

В любой квартире, как правило, всегда имеются потребители, которые постоянно включены в электросеть, поэтому возникшая аномалия с напряжением в 220В и на нулевом проводнике – будет по всей квартире.

Появление фазы в нулевом проводнике квартиры – всегда опасно для ее жильцов. Если же у вас в квартире имеются устройства, корпуса которых заземлены на рабочий «0» сети, то избежать вам поражения электрическим током попросту не удастся.

Перенапряжение в электросети квартиры — чревато неприятными последствиями

Подводя небольшой итог, разобранных нами ситуаций с обрывом нулевого провода в вашей, бытовой электросети напряжением 220В видим, что это ведет к достаточно разным и опасным в своей сути ситуациям, как для техники, так и для людей.

Обрыв «нулевого» магистрального провода электросети – это в первую очередь риск выхода из строя вашей бытовой техники, вследствие перенапряжения, которое может достигать даже 380В. Обрыв же индивидуально идущего к квартире нуля, это полное отсутствие напряжения в электросети вашей квартиры с появлением во всех розетках вместо нуля – «второй фазы». А это уже – чревато возможностью поражения электрическим током жильцов квартиры.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector