Kontakt-bak.ru

Контракт Бак ЛТД
148 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловая защита двигателя асинхронного

Как выбрать защиту для электродвигателя?

В электродвигателе, как и в многих других электротехнических устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Наибольшее распространение получили асинхронные электродвигатели. Можно выделить 5 основных видов аварий в асинхронных двигателях:

  • обрыв фазы ОФ статорной обмотки двигателя (вероятность возникновения 40-50%);
  • заторможение ротора ЗР (20-25%);
  • технологические перегрузки ТП (8-10%);
  • понижение сопротивления изоляции обмотки ПС (10-15%);
  • нарушение охлаждения двигателя НО (8-10%).

Любой из этих видов аварий может повлечь выход из строя электродвигателя, а короткое замыкание в двигателе, опасно для питающей сети.

Такие аварийные режимы как ОФ, ЗР, ТП и НО, способны вызвать перегрузку по току в статорной обмотке. В результате этого ток возрастает до 7 Iном и более в течение довольно большого промежутка времени.

Короткое замыкание в электродвигателе может привести к росту тока более чем в 12 Iном в течение очень короткого отрезка времени (около 10 мс).

Учитывая возможные повреждения, и подбирают требуемую защиту.

Защита двигателя от перегрузки. Основные типы.

Тепловая защита – осуществляется путем нагрева током обмотки нагревательного элемента и воздействия его на биметаллическую пластину, которая в свою очередь размыкает контакт в цепи управления контактора или пускателя. Тепловая защита осуществляется с помощь тепловых реле.

Температурная защита — реагирует на увеличение температуры наиболее нагретых частей двигателя с помощью встроенных температурных датчиков (например, позисторов). Через устройства температурной защиты (УВТЗ) воздействует на цепь управления контактора или пускателя и отключает двигатель.

Максимально токовая защита – реагирует на рост тока в статорной обмотке и при его достижении тока уставки отключат цепь управления контактора или пускателя. Осуществляется с помощью максимально токовых реле.

Минимально токовая защита — реагирует на исчезновение тока в статорной обмотке двигателя, например, при обрыве цепи. После чего, подается сигнал на отключение цепи управления контактора или пускателя. Осуществляется с помощью минимально токовых реле.

Фазочувствительная защита – реагирует на изменение угла сдвига фаз между токами в трехфазной цепи статорной обмотки двигателя. При изменении угла сдвига фаз в пределах уставки (например, при обрыве фаз угол увеличивается до 180º) подается сигнал на отключение цепи управления контактора или пускателя. Осуществляется с помощью фазочувствительных реле типа ФУЗ.

Таблица эффективности применения защит от перегрузки:

Тип защиты от перегрузкиНадежность защиты
надежноменее надежноне надежно
1Тепловая защитаТПОФ; ЗРНО; ПС
2Температурная защитаТП; НООФ; ЗРПС
3Максимально токовая защитаЗРТПОФ; НО; ПС
4Минимально токовая защитаОФНО; ПС; ТП; ЗР
5Фазочувствительная защитаТП; ОФ; ЗРНО; ПС

Одним из эффективных средств защиты двигателя является автоматический выключатель.

Автоматический выключатель, обладая максимально токовой защитой, что позволит защитить двигатель от чрезмерного роста тока в цепи статорной обмотки, например при обрыве фазы, или повреждении изоляции. При этом он защитит питающую цепь от короткого замыкания в двигателе.

Автоматический выключатель, имеющий в своем составе тепловой расцепитель, расцепитель минимального напряжения, способен защитить двигатель и от других нештатных режимов.

В настоящее время, это одно из наиболее эффективных защитных устройств асинхронных двигателей и цепей, в которых они работают.

Общие правила выбора защиты асинхронных двигателей.

Все двигатели необходимо защищать от короткого замыкания, а электродвигатели, работающие в режиме S1, должны иметь защиту от перегрузки по току.

Электродвигатели, обмотки которых при запуске переключаются с «треугольника» на «звезду», желательно защищать трехполюсными тепловыми реле с ускоренным срабатыванием в неполнофазных режимах. Для электродвигателей, работающих в повторно-кратковременных режимах, рекомендуется предусматривать встроенную температурную защиту. Двигатели, работающие в кратковременном режиме S2 с возможным заторможением ротора без технологического ущерба, следует оснащать тепловой защитой. В случае, если заторможение ротора влечет за собой технологический ущерб, следует применять температурную защиту.

Тепловые реле предназначены в основном для защиты двигателей в режиме S1. Допустимо применение их и для режима S2, если исключено увеличение длительности рабочего периода. Для режима S3 применение тепловых реле допускается в исключительных случаях при коэффициенте загрузки двигателя не более 0,7.

Для защиты обмоток электродвигателя, соединенных в «звезду», могут применяться однополюсные реле (два реле), двухполюсные и трехполюсные реле. Защита обмоток, соединенных в «треугольник», должна осуществляться трехполюсными реле с ускоренным срабатыванием в неполнофазных режимах.

На многоскоростные двигатели нужно предусматривать отдельные реле на каждой ступени скорости при необходимости полного использования мощности на каждой ступени или одно реле с уставкой, выбранной по току ступени наибольшей скорости для двигателей с вентиляторной нагрузкой.

Номинальный ток тепловых элементов реле должен выбираться по номинальному току двигателя так, чтобы номинальный ток двигателя находился между минимальной и максимальной уставками реле по току.

На электротехническом рынке можно найти и другие специализированные устройства защиты электродвигателей, разумеется, цена у них будет значительно отличаться от автоматических выключателей. У себя в проектах я применяю лишь автоматы, контакторы с тепловым реле, устройства плавного пуска и частотные преобразователи, которые имеют встроенную защиту электродвигателей.

ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ ОТ АВАРИЙНЫХ РЕЖИМОВ

Привод исполнительных механизмов различных технологических процессов, как правило, осуществляется от электродвигателей.

Двигатель относится к основным компонентам электропривода, в наибольшей степени подвергающимся в процессе эксплуатации воздействию неблагоприятных факторов различного характера.

Причины вероятных отклонений от нормального режима работы электродвигателя можно разделить на три основные группы:

  • проблемы в исполнительных механизмах, вызывающие торможение и перегрузку приводного электродвигателя;
  • нарушение качества электроэнергии, питающей электродвигатель;
  • дефекты, возникающие внутри самого двигателя.

Для обеспечения надёжной эксплуатации, электродвигатель должен быть оборудован автоматическими защитами в необходимом объёме, реагирующими на опасные отклонения рабочих параметров и перегрузки по любой причине из перечисленных групп и действующими на отключение выключателя.

Минимальный объём автоматических устройств защиты электродвигателей определяется правилами устройства электроустановок (ПУЭ). Электрические двигатели различаются по номинальной мощности, напряжению питания, роду потребляемого тока, а также конструктивными особенностями.

В соответствии с этими различиями, а также исходя из условий работы, для каждой модели электрической машины производится выбор автоматической защиты электродвигателя. Различные виды автоматических устройств действуют как на отключение выключателя, так и на включение предупредительной сигнализации.

По роду потребляемого тока электродвигатели делятся на:

  • машины переменного;
  • постоянного тока.

В быту и производстве распространены двигатели переменного тока, которые бывают асинхронными и синхронными.

По уровню номинального напряжения электрические машины переменного тока делятся на две основные группы:

  • низковольтные, питающиеся напряжением до 1000 В;
  • высоковольтные, рассчитанные на работу в сетях выше 1000 В.

Наиболее массовое распространение имеют асинхронные машины с номинальным напряжением 0,4 кВ.

Защищаются они посредством автоматического выключателя, имеющего электромагнитный и тепловой расцепители от короткого замыкания и перегрузки.

ОСНОВНЫЕ ТИПЫ ЗАЩИТ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ ДО 1000 В

Токовая отсечка.

Из всех аварийных режимов наиболее опасным является междуфазное короткое замыкание. Данный вид повреждения требует немедленного отключения асинхронного двигателя выключателем от питающей сети.

В соответствии с действующими правилами, асинхронные двигатели до 1000 В должны защищаться от коротких замыканий плавкими предохранителями или электромагнитными и тепловыми расцепителями автоматических выключателей.

Как обычно, правила отстают от фактических реалий. На вновь вводимых объектах асинхронные электрические машины комплектуются выносными многофункциональными блоками автоматической релейной защиты электродвигателя на базе микроконтроллеров, воздействующими на отключение выключателя.

Основной сути это не меняет. Автоматические защитные устройства от междуфазных коротких замыканий реагируют на сверхтоки и не имеют выдержки времени отключения выключателя. Такие устройства по-прежнему называют токовыми отсечками, защитные реле срабатывают при КЗ в обмотке статора либо на выводах асинхронного двигателя.

Зоной действия защищающего устройства является участок электросети, расположенный после ТТ или датчика. Обычно кроме самого асинхронного двигателя в защищаемой зоне находится и питающий кабель.

Параметры срабатывания токовой отсечки должны быть надёжно отстроены от пусковых токов. С другой стороны, автоматическое защитное устройство должно обладать достаточной чувствительностью при межвитковых замыканиях в любой части обмотки статора асинхронной машины.

Данный вид ненормального режима возникает при неисправностях или перегрузке исполнительного механизма. Перегрузка двигателя также может происходить по причине его недостаточной мощности. Режим перегрузки характеризуется повышенным уровнем токового потребления с относительно небольшой кратностью по сравнению с номинальным значением.

Токовая уставка автоматической защиты электродвигателя от перегрузки меньше значения пусковых токовых параметров, поэтому должна быть осуществлена отстройка от режима запуска путём искусственной задержки времени срабатывания и отключения автоматического выключателя.

Защищённость электромашины от перегрузки может быть реализована с применением следующих устройств:

  • теплового расцепителя автоматического выключателя защиты электродвигателя;
  • выносного защитного комплекта с токовым реле и реле времени, воздействующего на отключение выключателя при перегрузке;
  • блока комплексной защитной автоматики двигателя на микроконтроллере, при срабатывании воздействующего на расцепитель выключателя.

В случае применения автоматического выключателя требуется просто подобрать подходящий по номинальному току и характеристике автомат. Тепловой расцепитель выключателя защиты электродвигателя обеспечивает интегральную зависимость времени отключения выключателя от величины токовой перегрузки.

Защитный автоматический релейный комплект с выносными электромагнитными реле настраивается на фиксированные ток и время срабатывания защиты.

В этом варианте, в отличие от теплового расцепителя, токовые и временные параметры между собой не связаны. Выходные реле выносных комплектов релейной защиты должны воздействовать на независимый (не тепловой) расцепитель автоматического выключателя.

Читать еще:  Слава созидателям

ЗАЩИТА ОТ НЕПОЛНОФАЗНОГО РЕЖИМА

Этот вид автоматического защитного устройства не предписан ПУЭ как обязательный, хотя является весьма желательным. При работе трёхфазного электродвигателя на двух фазах происходит постепенный перегрев обмоток, приводящий к разрушению изоляции обмоточного провода.

Самое плохое в этой ситуации то, что потребляемый ток при этом может быть сравним с номинальной величиной, то есть токовые защиты электродвигателя, в том числе расцепители теплового типа, защищающие от перегрузки на этот режим могут не среагировать.

Некоторые модели электрических машин содержат встроенные (температурные) датчики обмотки.

Такие модификации электрических машин можно оснастить специальным устройством защиты электродвигателя, осуществляющие контроль теплового состояния электромашины.

Тепловые защитные устройства способны помочь и в случае перегрева при работе на двух фазах.

ЗАЩИТНЫЕ УСТРОЙСТВА ДВИГАТЕЛЕЙ ВЫШЕ 1000 ВОЛЬТ

Защищённость высоковольтных электрических машин обеспечивается только выносными релейными устройствами. Тепловой и электромагнитный расцепители являются прерогативой низковольтных устройств.

Принцип действия и расчёт уставок токовой отсечки и защиты от перегрузки такой же, как для низковольтных машин. Но кроме этого существуют специфические защитные устройства, не применяемые на низких напряжениях.

Защита от однофазных замыканий на землю.

Особенностью сетей высокого напряжения (6 – 10 кВ) является работа в режиме изолированной нейтрали. В таких сетях величина Iз замыкания на землю может составлять всего единицы ампер, что находится вне зоны чувствительности максимальных токовых защит от перегрузки.

Реле земляной защиты электродвигателя (это её название на жаргоне релейщиков) подключается к специальному трансформатору нулевой последовательности, представляющему собой тор (бублик), через который проходит кабель питания.

При этом через тор не должен проходить вывод экранирующей оболочки высоковольтного кабеля, в противном случае имеют место ложные срабатывания устройства с отключением выключателя.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Защита электродвигателей от аварийных режимов

Надежность электродвигателей в эксплуатации в значитель-ной степени зависит от эффективности их защиты от аварийных режимов. Отказы электродвигателей приводят к значительным убыткам, которые вызваны не только необходимостью ремонта электродвигателей, но и к ущербу из-за недодачи, а в ряде случаев, и из-за порчи продукции. Изучение причин отказов на многих заводах разных отраслей промышленности показало, что около 50% отказов асинхронных двигателей в эксплуатации вызвано их неудовлетворительной защитой от аварийных режимов [1].

В правилах устройства электроустановок (ПУЭ) [2] приведены следующие требования для защиты электродвигателей. В разделе «Защита асинхронных и синхронных электродвигателей напряжением свыше 1 кВ» предписано предусматривать на электродвигателях защиту от многофазных замыканий, от однофазных замыканий на землю, от токов перегрузки и защиту минимального напряжения. На синхронных двигателях, кроме того, должна предусматриваться защита от асинхронного режима, которая может быть совмещена с защитой от токов перегрузки. В разделе «Защита электродвигателей до 1 кВ (асинхронных, синхронных и постоянного тока)» предписано, что для электродвигателей переменного тока должна быть предусмотрена защита от многофазных замыканий, а в сети с глухозаземленной нейтралью – также от однофазных замыканий, а в отдельных случаях – защита от перегрузок и защита минимального напряжения.

На синхронных электродвигателях (при невозможности втягивания в синхронизм с полной нагрузкой) дополнительно должна предусматриваться защита от асинхронногого режима.

Для двигателей постоянного тока должны предусматриваться защиты от КЗ. При необходимости дополнительно могут устанавливаться защиты от перегрузки и от чрезмерного повышения частоты вращения.

ПУЭ также рекомендует способы защиты электродвигателей от аварийных режимов. Для защиты электродвигателей от КЗ должны применяться предохранители или автоматические выключатели. Для того, чтобы предохранители или автоматические выключатели не срабатывали ложно, т.е. при пиках технологических нагрузок, при пусковых токах и т.п., необходимы следующие требования. Для электродвигателей механизмов с легкими условиями пуска отношение пускового тока электродвигателя к номинальному току плавкой вставки должно быть не более 2,5, а для электродвигателей механизмов с тяжелыми условиями пуска (большая длительность разгона, частые пуски и т.п.) это отношение должно быть равным 2,0-1,6.

На электростанциях для защиты от КЗ электродвигателей собственных нужд, связанных с технологическим процессом, должны применяться автоматические выключатели.

Защита электродвигателей от перегрузки должна устанавливать-ся в случаях, когда возможна перегрузка механизмов по технологическим причинам. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловым реле или другими устройствами такого же функционального назначения.

Защита от перегрузок не требуется для электродвигателей с повторно-кратковременным режимом работы.

Защита минимального напряжения должна устанавливаться для двигателей постоянного тока, которые не допускают непосредственного включения в сеть, а также для электродвигателей механизмов, самозапуск которых после остановки недопустим. Для синхронных двигателей защита от асинхронного режима может осуществляться с помощью защиты от перегрузки по току статора.

В ПУЭ приведены также требования по защите двигателей переменного и постоянного тока от КЗ. В двигателях с заземленной нейтралью она должна быть во всех фазах или полюсах. В электродвигателях с изолированной нейтралью также во всех фазах или полюсах при защите предохранителями, а при защите автоматическими выключателями – не менее чем в двух фазах или в одном полюсе.

Защита электродвигателей переменного тока от перегрузок должна осуществляться в двух фазах при защите электродвигателей от КЗ предохранителями, но можно ограничиться защитой в одной фазе при защите электродвигателей от КЗ автоматическими выключателями.

Защита электродвигателей постоянного тока от перегрузок может осуществляться в одном полюсе.

В промышленности и в сельском хозяйстве в подавляющем большинстве случаев применяют трехфазные асинхронные двигатели. Они потребляют около 50% всей вырабатываемой в стране электроэнергии. Поэтому рассмотрим в первую очередь способы защиты от аварийных режимов этих двигателей.

Обширный статистический материал о причинах отказов трех-фазных асинхронных двигателей показывает, что наиболее частыми причинами являются: короткое замыкание в обмотке, обрыв фазы, заклинивание в подшипниковых узлах ротора или исполни-тельного механизма (так называемый режим короткого замыкания двигателя, что не имеет ничего общего с коротким замыканием в обмотке двигателя или в сети), технологические перегрузки, ухудшение охлаждения, понижение сопротивления изоляции ниже допустимого значения [1, 3].

С точки зрения электробезопасности наиболее опасен обрыв одной фазы, что часто бывает при защите электродвигателей плавкими предохранителями. В этом случае двигатель может продолжать работать на двух фазах. В поврежденной фазе будет генерироваться ЭДС, которая повысит напряжение в нулевом проводе, что может быть причиной поражения электрическим током через цепь заземления электродвигателей.
Рассмотрим наиболее распространенные методы защиты асинхронных двигателей.

Защита с помощью тепловых реле

Тепловые реле, если они правильно отрегулированы, хорошо защищают электродвигатели от технологических перегрузок. Выпускаемые в настоящее время тепловые реле типа РТЛ и РТТ вполне удовлетворительно защищают электродвигатели при обрыве одной фазы, однако они не реагируют своевременно на заклинивание ротора, а также на ухудшение охлаждения двигателя и понижение сопротивления изоляции обмотки ниже допустимого.

В таблице 1 приведены макси-мально допустимые значения номинальных токов для разных типоразмеров тепловых реле типа РТЛ (при температуре окружающей среды +40 о С), а также диапа-зон регулирования тока реле.

Защита асинхронных электродвигателей

Правильный выбор аппаратуры управления и защиты – одно из главных условий надежной защиты электродвигателей. Анализ случаев выхода из строя двигателей показывает, что причина этого часто кроется именно в неправильном выборе аппаратуры, которая не среагировала на аварийный режим работы двигателя и не отключила его от сети в критический момент.
Нарушение режима вызывается, как правило, превышением тока в обмотках электродвигателя (80…90% всех аварийных случаев), которое может быть обусловлено технологической перегрузкой, потерей фазы в сети и работой двигателя в однофазном режиме на двух оставшихся фазах, снижением напряжения в сети при полной нагрузке на двигатель.
Электродвигатель в нагретом состоянии должен без вредных последствий выдерживать на испытательном стенде 50% нагрузку по току в течение 2 минут.
Для того, чтобы предупредить выход из строя электродвигателей из-за превышения тока в обмотках, необходимо правильно выбирать пусковую и защитную аппаратуру.
Магнитные пускатели предназначены для дистанционного управления асинхронными электродвигателями с короткозамкнутым ротором. Магнитные пускатели обеспечивают защиту электродвигателей от падения напряжения (нулевая защита) и от перегрузки. Защита от перегрузок осуществляется с помощью теплового реле Контакторы переменного и постоянного тока предназначены для дистанционного и автоматического управления электродвигателями. Кнопки управления предназначены для замыкания и размыкания цепей управления автоматической пусковой аппаратуры, применяемой в схемах дистанционного управления электродвигателями и для коммутации электрических цепей. Для реверсирования двигателя применяются трехкнопочные станции. Контактор серии П6 применяется для частого включения электродвигателей малой мощности.

Температурную защиту выполняют при помощи устройства встроенной температурной защиты (УВТЗ). В качестве датчиков температуры для устройства используют позисторы – полупроводниковые элементы, изменяющие свое сопротивление в зависимости от температуры окружающей среды. В цепи, в которую включен позистор, изменяется сила тока пропорционально изменению температуры.
Позистор встраивают внутрь лобовых частей обмотки электродвигателя в заводских условиях. Их подключают к внешнему устройству (рисунок 4), состоящему из усилителя сигнала и электромагнитного реле, контакты которого находятся в цепи катушки магнитного пускателя.
Температурная защита электродвигателей – прямая, а тепловая защита (от тока, превышающего номинальный ток в течении некоторого времени) – косвенная.
Укоренилось мнение, что температурная защита предпочтительнее. Но она имеет ряд серьезных недостатков: необходимо тщательно встраивать температурные элементы – датчики – в обмотку электродвигателя; наличие инерционности этих элементов, что отрицательно проявляется при больших перегрузках и пусковых токах (затяжных); для повышения чувствительности реле несколько элементов нужно включать последовательно; двигатели со встроенной температурной защитой можно объединять только с пускателем и нельзя применять при ручном управлении. Вследствие этих обстоятельств температурная защита не получает широкого распространения.

Читать еще:  Селективность что это

Рисунок 4 – Включение УВТЗ в схему управления одиночным электродвигателем. Конец, обозначенный звездочкой, подключается к фазе А или С при катушке магнитного пускателя на 380 В или к нулевому проводу при катушке на 220 В

В ряде стран предпочтение отдают тепловым реле. Для повышения надежности их работы совершенствуют их устройство таким образом, чтобы времятоковые характеристики реле и защищаемого электродвигателя были подобными, а поле рассеяния характеристик пограничного тока было по возможности уже. Это реле должно выдерживать кратковременную перегрузку, соответствующую току заторможенного электродвигателя.
Лишь в тех случаях, когда тепловые реле не могут обеспечить защиту электродвигателей, например при большом числе включений двигателя в час и с резкопеременной нагрузкой, а так же при работе их в окружающей среде с высокой температурой или в условиях с плохой вентиляцией обмоток (ток, потребляемый из сети не превышает номинальный, но электрообмотка перегревается из-за недостаточной теплоотдачи), следует применять встроенную температурную защиту.
В сельском хозяйстве в таких условиях могут оказаться 4…10% электродвигателей.

Традиционная тепловая защита при помощи настроенных тепловых реле хорошо защищает электродвигатель лишь от перегрузок по току, но ненадежно – при обрыве фазы, при включении двигателя с заторможенным ротором и вовсе не реагирует на нарушение охлаждения. Температурная защита при помощи устройств ИВТЗ надежно работает при нарушении охлаждения и перегрузках по току, но не защищает от потери фазы и при включении двигателя с заторможенным ротором. Другими словами, ни та, ни другая защита не обладает универсальностью.
Более универсальным при защите трехфазных электродвигателей является устройство защиты ФУЗ. Оно показано на рисунке 5.
Оно состоит из двух фазовращательных трансформаторов тока ТА, у которых первичные обмотки 1 – сменные, имеющие от 1…2 витков (для электродвигателей с номинальным током 16…32 А) до 16…32 витков (1…2 А). Вторичные обмотки трансформаторов, между средними выводами которых включена катушка защитного реле К, выведены в схему 1 контроля угла сдвига фаз между векторами напряжения U1 и U2 во вторичных обмотках трансформаторов тока и схему 2 контроля за перегрузкой. В нормальном режиме угол сдвига фаз между U1 и U2 равен около 120о, а при обрыве фаз становится равным 180о, что вызывает срабатывание реле К, контакты которого размыкают цепь магнитного пускателя.
Ток срабатывания защиты от перегрузки регулируется при помощи резистора R в предлелах от 0,65 до 1,35 Iуст.н. При надлежащей настройке эта защита срабатывает за 30…50 секунд, если перегрузка составляет 50%, и за 6…10 секунд при коротких замыканиях.

Рисунок 5 – Схема включения фазочувствительного защитного устройства ФУЗ:
1 – блок со схемой контроля угла сдвига фаз (защита от потери фаз), 2 – блок со схемой защиты от перегрузки по току, R – резистор регулирования установок, RT – позистор, встраиваемый в любую часть обмотки защищаемого электродвигателя.

Для того, чтобы обеспечить отключение электродвигателя при нарушении его охлаждения в цепь защиты включается позистор RT, размещенный в лобовой части обмотки электродвигателя.

Поддержка

Защита электродвигателя

В электродвигателях, как и в многих других электротехнических, устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае, из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Для повышения ресурса безаварийной работы двигателя и повышения эксплуатационной надежности, концерн Русэлпром предлагает использовать защиту двигателей.

Применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки. Правильный выбор защиты двигателя позволяет получить необходимый эффект с обоснованными затратами.

Как правило, для двигателей напряжением до 1000 Вт предусматривается:

  • защита от коротких замыканий;
  • защита от перегрузки.

Короткое замыкание в электродвигателе может привести к росту тока, более чем в 12 раз в течение очень короткого промежутка времени (около 10 мс). Для защиты двигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.

Защита от перегрузки устанавливается в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении.

Для защиты двигателя от перегрузки используется:

  • Тепловая защита;
  • Температурная защита;
  • Максимально токовая защита;
  • Минимально токовая защита;
  • Фазочувствительная защита.

Температурная защита

Наиболее эффективной защитой двигателей является температурная защита.

Температурная защита реагирует на увеличение температуры наиболее нагретых частей двигателя с мощью встроенных температурных датчиков и через устройства температурной защиты воздействует на цепь управления контактора или пускателя и отключает двигатель.

Любой двигатель производства концерна «Русэлпром» по заказу потребителя может быть укомплектован встроенными температурными датчиками для защиты двигателей в аварийных режимах, следствием которых может быть нагрев обмотки до недопустимой температуры.

В качестве датчиков используются полупроводниковые терморезисторы с положительным температурным коэффициентом — позисторы. Датчики встраиваются в лобовые части обмотки статора со стороны противоположной вентилятору наружного обдува по одному в каждую фазу, соединяются последовательно. Концы цепи датчиков выводятся на специальные клеммы в коробке выводов. К этим клеммам подключают реле или иной аппарат, реагирующий на сигнал датчиков.

Датчики реагируют только на температуру, и их действие не зависит от причин возникновения опасного нагрева. Поэтому такая система обеспечивает защиту двигателя как в режимах с медленным нагреванием (перегрузка, работа на двух фазах), так и в режимах с быстрым нагреванием (заклинивание ротора, выход из строя подшипников и другое).

Согласно требованиям ГОСТ 27895 (МЭК 60034$11) температура срабатывания защиты должна соответствовать значениям, приведенным в таблице.

Пороги термозащиты

Тепловой режимЗначение температуры обмотки статора для систем изоляции класса нагревостойкости, град. С
BFH
Установившийся (Предельно допустимое среднее значение)120140165
Медленной нагревание (Срабатывание защиты)145170195
Быстрое нагревание (Срабатывание защиты)200225250

Характеристики датчиков температурной защиты

Двигатели с датчиками температурной защиты имеют встроенные в каждую фазу обмотки и соединённые последовательно терморезисторы типа СТ14-2-145 по ТУ11-85 ОЖО468.165ТУ или другие терморезисторы с аналогичными параметрами.

В вводном устройстве двигателей предусмотрены клеммы для подсоединения цепи терморезисторов к исполнительному устройству температурной защиты.

Температура срабатывания датчиков температурной защиты:

Класс нагревостойкости изоляции двигателяОбозначения типа позистора по ТУ11-85 ОЖО468.165ТУПороговая температура срабатывания позистора, град. С.
ВCТ-14А-2-130130
FCТ-14А-2-145145
HCТ-14А-2-160160

Срабатывание температурной защиты происходит при возрастании температуры обмотки до значения, указанного в таблице 13, и температуре позистора, указанной в таблице 13.1. Время срабатывания защиты не превышает 15 с. Исполнительное устройство температурной защиты должно отключать силовую цепь двигателя при достижении сопротивления цепи термодатчиков 2100- 450 Ом.

Сопротивление одного позистора составляет 30 — 140 Ом при 25 градусах C, сопротивление цепи из 3 позисторов составляет 250±160 Ом.

Сопротивление изоляции цепи терморезисторов относительно обмоток статора двигателя при температуре окружающей среды (25 +5)°C составляет:

  • В практически холодном состоянии двигателя находится в пределах от 120 до 480 Ом. Измерительное напряжение при контроле не более 2,5 В.
  • В номинальном режиме работы двигателей при установившемся тепловом состоянии (температура обмотки двигателя

Электрическая защита асинхронных электродвигателей

Самым распространенным видом электродвигателей бесспорно можно назвать трёхфазные электродвигатели переменного тока, напряжение которых составляет до 500 В при мощностях от 0,05 до 350 — 400 кВт.

Так как требуется обеспечить бесперебойное и надежное функционирование электродвигателей, то наибольшее внимание в первую очередь следует уделить выбору электродвигателей по режиму работы, номинальной мощности и форме исполнения. Нужно не забывать о том, что немалое значение имеет соблюдение требований и необходимых правил во время разработки принципиальной электрической схемы, подборе пускорегулирующей аппаратуры, кабелей и проводов, эксплуатации и монтаже электропривода.

Работа электродвигателей в аварийных режимах

Как известно, даже в случае, если электроприводы спроектированы в соответствии со всеми нормами и эксплуатируются с соблюдением всех правил, то все равно при их работе всегда остается пусть небольшая, но все-таки вероятность появления аварийных режимов или режимов, которые характеризуются ненормальной работой для двигателей и другого электрооборудования.

Среди различных аварийных режимов можно перечислить следующие:

1. Короткие замыкания, которые в свою очередь делятся на:

  • короткие замыкания, которые происходят в обмотках электродвигателя. Они могут быть однофазными и многофазными, а именно двухфазными и трехфазными;
  • многофазные короткие замыкания, которые происходят в выводной коробке электродвигателя и во внешней силовой цепи (например, в ящиках сопротивлений, на контактах коммутационных аппаратов, в проводах и кабелях);
  • короткие замыкания фазы на нулевой провод или корпус во внешней цепи (в электросетях с заземленной нейтралью) или внутри двигателя;
  • короткие замыкания, возникающие в цепи управления;
  • короткие замыкания, возникающие в обмотке двигателя между витками. Этот тип замыканий часто называют витковыми замыканиями.

Короткие замыкания, возникающие в электроустановках, считаются самым опасным типом аварийных режимов из всех существующих. Как правило, чаще всего они появляются по причине перекрытия изоляции или пробоя. Токи короткого замыкания могут достичь таких амплитуд, которые в десятки и сотни раз превышают значения токов при нормальном режиме работы. Тепловое воздействие и динамические усилия, вызванные токами короткого замыкания, которым подвергаются токоведущие части, способны вывести из строя всю электроустановку целиком.

2. тепловые перегрузки электродвигателя, которые появляются из-за того, что по его обмоткам происходит прохождение повышенных токов. Это может происходить в следующих ситуациях:

  • когда по различным технологическим причинам происходят перегрузки рабочего механизма;
  • когда имеют место быть при застопоривании или, наоборот, пуске двигателя под нагрузкой особо тяжелые условия;
  • когда случается длительное понижение напряжения сети;
  • когда произошло выпадение одной из фаз внешней силовой цепи;
  • когда в обмотке электродвигателя случился обрыв провода;
  • когда имели место быть механические повреждения в рабочем механизме или в самом двигателе;
  • когда по причине ухудшения условий охлаждения двигателя произошли тепловые перегрузки.

Тепловые перегрузки отрицательно сказываются на работе электродвигателя. Главной причиной этого является то, что они вызывают ускоренное разрушение и старение изоляции двигателя, что в свою очередь влечет частое возникновение коротких замыканий. То есть все это приводит к серьезным авариям и слишком быстрому выходу двигателя из строя.

Виды защиты электродвигателей асинхронного типа

Для защиты электродвигателей от различных повреждений, возникающих во время работы двигателя в условиях, отличных от нормальных, разрабатываются всевозможные средства защиты. Один из принципов, применяемый в таких средствах защиты, предусматривает своевременное отключение неисправного двигателя от сети, ограничивая, тем самым, или полностью предотвращая развитие аварии.

Основным и самым действенным средством бесспорно считается электрическая защита двигателей, которая соответствуем требованиям ПУЭ (нормативный документ, «Правила устройства электроустановок»).

Если за основу классификации взять характер ненормальных режимов работы и повреждений, которые могут возникнуть, то можно назвать несколько основных наиболее часто встречающихся типов электрозащиты для двигателей асинхронного типа.

Защита электродвигателей асинхронного типа от коротких замыканий

Когда в главной силовой цепи электродвигателя или в цепи управления токов появляется аварийный режим короткого замыкания, то происходит отключение двигателя. В этом и заключается защита от короткого замыкания.

Срабатывание всех аппаратов, которые используются для осуществления защиты электродвигателей асинхронного типа от коротких замыканий, происходит практически мгновенно, без задержки во времени. К таким аппаратам относятся, например, предохранители плавкие, реле электромагнитные, выключатели автоматические с расцепителем электромагнитного типа.

Защита электродвигателей асинхронного типа от перегрузок

Благодаря наличию защиты от перегрузки двигатель предохраняется от чрезмерного перегрева, возникающего, в частности, при относительно малых по величине, но растянутых во времени тепловых перегрузках. Защиту от перегрузки нужно использовать только для электродвигателей не всех рабочих механизмов, а только тех, у которых возможны ненормальные скачки нагрузки в случае нарушения стандартного рабочего процесса.

Аппараты, которые разработаны с целью защитить сеть от перегрузки, например, электромагнитные реле, температурные и тепловые реле, автоматические выключатели с часовым механизмом или с тепловым расцепителем, в случае возникновения перегрузки способствуют отключению двигателя. При этом такое отключение происходит с определенной конкретной выдержкой времени. Выдержка прямо пропорционально зависит от величины перегрузки. Иными словами, чем больше перегрузка, тем меньше выдержка, и наоборот. Иногда даже происходит мгновенное отключение, это происходит при существенных перегрузках.

Защита электродвигателей асинхронного типа от понижения уровня напряжения или его исчезновения

Защиту от понижения уровня напряжения или его исчезновения также часто называют нулевой защитой. Выполняемая с помощью нескольких (или одного) электромагнитных аппаратов, защита подобного рода отключает электродвигатель при снижении уровня напряжения сети ниже минимально допустимого (возможно установить требуемый уровень минимально допустимого напряжения самостоятельно) значения или при перебоях напряжения питания, а также защищает электродвигатель от самопроизвольного включения после обеспечения допустимого напряжения в сети или устранения перерыва питания.

Для режима работы электродвигателей асинхронного типа на двух фазах также существует защита. Срабатывая, она отключает двигатель, тем самым защищая его от «опрокидывания» (остановка под током из-за понижения момента, развиваемого двигателем, в случае обрыва линий электропитания в одной из фаз главной цепи) и от перегрева.

Электромагнитные и тепловые реле применяются в качестве аппаратов защиты двигателей асинхронного типа. При использовании электромагнитного реле защита может не иметь выдержки времени.

Другие виды электрической защиты электродвигателей асинхронного типа

Не менее эффективные, но реже используемые средства защиты также существуют. Они применяются для защиты от однофазных замыканий на землю в IT сетях (у которых нейтраль изолирована), от повышения уровня напряжения, от увеличения скорости вращения привода и т.п.

Электрические аппараты, применяемые для защиты электродвигателей

В зависимости от функциональной сложности аппараты для электрической защиты электродвигателей асинхронного типа могут применяться для предохранения от одного или нескольких одновременно типов угроз. Защиту от коротких замыканий или перегрузок обеспечивают различные автоматические выключатели. Бывают аппараты защиты однократного или многократного действия. К первым относятся, например, плавкие предохранители. Их недостатком можно считать то, что после выполнения своей функции, такие средства защиты подлежат замене и не могут использоваться повторно. Более подходящими могут оказаться перезаряжаемые средства защиты однократного действия. Что касается аппаратов многократного действия, они отличаются способом возврата в состояния готовности на два типа: с ручным возвратом и автоматическим. Примером таких устройств служат тепловые и электромагнитные реле.

Выбор вида электрической защиты электродвигателей асинхронного типа

Для каждого электродвигателя асинхронного типа необходимо выбирать подходящий ему вид электрической защиты. Нужно учитывать условия работы, степень важности привода, его мощность и порядок обслуживания электродвигателя в целом (наличие закрепленного за двигателем сервис-инженера). Может быть выбран как один, так и сразу несколько видов защиты электродвигателей.

Хорошая защита – это та, которая в итоге окажется надежной и простой в эксплуатации. Для грамотного подбора вариантов защиты необходимо провести аудит электрооборудования. Особенное внимание следует уделить данным, касающимся аварийности оборудования в мастерских, на строительных площадках, в цехах и т.д. В результате подобного анализа будет выявлено множество нарушений нормальной работы технологического оборудования и электродвигателей, что позволит подобрать наиболее соответствующее ситуации средство электрической защиты двигателя.

Защита электродвигателей асинхронного типа от коротких замыканий обязательно должна быть предусмотрена вне зависимости от его характеристик (напряжения и мощности). В данном случае защиту нужно организовать комплексным путем в два приема. В одном случае будет необходимо обеспечивать защиту при значениях тока меньших, чем значения пусковых токов. Это подходит в некоторых случаях возникновения коротких замыканий, например замыкания на корпус внутри двигателя или при витковых замыканиях. Во втором случае защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5—10 раз превышать его номинальный ток

Наиболее доступные и функционально простые средства защиты не позволят одновременного выполнения этих приемов. Поэтому защита с применением подобного рода аппаратов всегда строится на основании сознательного допущения, что при возникновении вышеуказанных повреждений в двигателе, он отключится не мгновенно, а постепенно, причем при условии дальнейшего развития подобных повреждений, когда ток, потребляемый двигателем из сети, возрастет многократно.

Все аппараты электрической защиты двигателей должны быть тщательным образом отрегулированы и правильно подобраны с учетом всех особенностей в каждом конкретном случае. Не допускается, чтобы средства защиты выдавали ложное срабатывание.

Инструкция по выбору теплового реле для защиты электродвигателя

  • Методика выбора
  • Что делать, если паспортные данные не известны?

Методика выбора

Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.

Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.

Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.

Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.

Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.

Что делать, если паспортные данные не известны?

Для этого случая рекомендуем использовать токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Кстати, недавно мы рассмотрели принцип действия и устройство тепловых реле, с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Напоследок рекомендуем просмотреть полезное видео по теме:

Надеемся, прочитав нашу статью, вам стало понятно, как выбрать тепловое реле для двигателя по номинальному току, а также мощности самого электродвигателя. Как вы видите, условия выбора аппарата не сложные, т.к. можно без формул и сложных вычислений подобрать подходящий номинал, используя таблицу!

Советуем также прочитать:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector