Плавный запуск электродвигателя
Что дает плавный пуск электродвигателей
Современное производство трудно представить без большего количества электродвигателей. Они используются для работы насосов, конвейеров, лифтов, станков и т.д. Процесс запуска и остановки двигателей носит постоянный характер. Что же происходит с электродвигателем в момент его запуска. Даже при запуске двигателя на холостом ходу происходит выделение энергии в статоре, несколько превышающей энергию, необходимую для вращения ротора. Если вал электродвигателя связан с каким-либо механизмом (имеется какая-либо нагрузка), то эта энергия увеличивается.
При запуске электродвигателя в его обмотках происходит переходный процесс, сопровождаемый скачком тока, который с течением времени снижается до номинального значения. Значение пускового тока в 6-10 раз превышает номинальное значение тока электродвигателя. Это приводит к тому, что при запуске электродвигателя будет происходить падение напряжение в сети, вызванное резким повышением тока. В результате будет оказываться отрицательное влияние на питающую сеть, что может привести к выходу из строя или ненормальной работе другого оборудования, особенно это касается насосов и аппаратуры связи.
Значительные броски тока при прямом пуске электродвигателя оказывают негативное воздействие на сами обмотки двигателя. Обмотки испытывают динамический удар, с каждым пуском происходит нарушение изоляции обмоток, что приводит к межвитковым замыканиям. Также частые тяжелые пуски вызывают перегрев обмоток электродвигателя, что приводит к их повреждению.
Запуск электродвигателей методом прямого пуска отрицательно сказывается на технологии производства. Ударные моменты при запуске способны привести к повреждению самого механизма, связанного с электродвигателем, или испортить продукцию.
Для исключения или снижения негативных составляющих, возникающих при запуске электродвигателей, применяют устройства плавного пуска. Данное устройство позволяет значительно снизить пусковые токи в обмотках электродвигателей, уменьшить посадки напряжения, при запуске оборудования. Применение устройств плавного пуска позволяет снизить потребление активной электроэнергии и уменьшить реактивную составляющую нагрузки. Также значительно увеличивается срок службы электродвигателей и сопряженных с ними устройств и механизмов. Особенно это актуально для такого дорогостоящего оборудования как насосы. Большинство современных насосов уже оснащено устройствами, обеспечивающими плавный пуск насоса, защиту от сухого хода, перегрузок и т.п. Если же в состав насоса такое устройство не входит, то возможно приобретение отдельного контроллера, к примеру станции управления насосами Пампэла.
Плавный запуск электродвигателя осуществляется при помощи частотного метода и фазового метода. Частотный метод основан на постепенном повышении частоты вращения электродвигателя от 0Гц до 50Гц, тем самым исключаются все пусковые перегрузки двигателя. Использование частотного метода наиболее оправдано при работе оборудования с изменяющейся нагрузкой, к примеру насосов и насосных станций, когда изменение частоты позволяет достичь оптимальных показателей работы двигателя. Наиболее эффективными устройствами обеспечивающими частотное регулирование насоса, являются частотные преобразователи, к примеру Speedrive производства ESPA. Существуют комплекты насосных станции имеющие эти функции, к примеру система автоматического водоснабжения с частотным регулированием «Частотник» производства российской фирмы Джилекс.
Для электродвигателей с постоянной нагрузкой, для которых изменение частоты не столь актуально, применяют фазовый метод плавного пуска. Этот метод основан на постепенном увеличении питающего напряжения от 0 до номинального значения. С увеличением напряжения постепенно увеличивается и ток в обмотках электродвигателя. Контролируя параметры работы двигателя, происходит плавный процесс запуска, в котором отсутствует резкий переходный процесс с резким скачком тока и просадкой напряжения. Запуск электродвигателя проходит в течении заданного периода времени, обычно он составляет 60-120 секунд.
По отношению с частотным методом, фазовый метод значительно дешевле и отличается большей надежностью. При использовании фазового метода отсутствуют отрицательные гармоники в процессе работы электрооборудования в номинальном режиме, их проявление возможно лишь в процессе запуска. Но необходимо учитывать, что если в процессе работы необходимо регулировать скорость вращения электродвигателя, то для осуществления плавного пуска необходимо использовать частотный метод.
Современные устройства плавного пуска способны производить поочередный запуск целой группы электродвигателей. После того как произошел запуск одного электродвигателя устройство шунтируется и двигатель переходит на прямую работу от сети, а устройство плавного пуска готово к запуску очередного двигателя.
В заключении еще раз остановимся на всех преимуществах плавного пуска электродвигателей. Благодаря применению устройств плавного пуска происходит снижение пусковых токов до 1-3 кратного значения номинального тока, значительно сокращается опасность разрушения механических деталей двигателя и привода. Отсутствует посадка напряжения в сети при запуске электродвигателя. Снижение пусковых токов благоприятно сказывается на состоянии изоляции обмоток двигателя, снижается вероятность перегрева электродвигателя. Использование устройства плавного пуска позволяет снизить расход электроэнергии на производство, и их внедрение позволит значительно повысить энергоэффективность производства, а также продлить срок эксплуатации оборудования.
Для чего нужен плавный пуск асинхронного двигателя
Из всех видов двигателей асинхронные двигатели получили наиболее широкое распространение в промышленности и продолжают вытеснять все больше и больше двигатели постоянного тока.
Асинхронные двигатели получили широкое распространение благодаря следующим своим качествам: дешевизне двигателя, простоте конструкции, надежности, высокому к. п. д. До настоящего времени асинхронные двигатели уступали место двигателям постоянного тока только в тех случаях, где требовалось плавное регулирование частоты вращения (строгальные станки, правильные машины, регулируемые главные приводы прокатных станов и т. п.), в электрическом транспорте и в приводах большой мощности повторно-кратковременного режима (реверсивные станы). Внедрение в промышленность регулируемых преобразователей частоты позволит, еще шире применять асинхронные двигатели.
Недостатками асинхронных двигателей являются:
1) Квадратичная зависимость момента от напряжения, при падении напряжения в сети сильно уменьшаются пусковой и критический моменты,
2) Опасность перегрева статора, особенно при повышениях напряжения сети, и ротора при понижении напряжения,
3) Малый воздушный зазор, несколько понижающий надежность двигателя,
4) Большие пусковые токи асинхронных двигателей. При пуске асинхронного двигателя с короткозамкнутым ротором ток статора больше номинального в 5 — 10 раз. Такие большие токи в статоре недопустимы по условиям динамических усилий в обмотках и нагрева обмоток. В асинхронных двигателях могут возникать переходные режимы с большими бросками тока не только при подключении двигателя к сети но и при его реверсе и торможении.
Итак, для чего нужно ограничивать пусковой ток в обмотках статора асинхронного электродвигателя с короткозамкнутым ротором?
Необходимость ограничения тока двигателей диктуется причинами электрического и механического характера. Причины электрического характера ограничения тока двигателей могут быть следующие:
1) Уменьшение толчков тока в сети. В некоторых случаях для крупных двигателей требуется ограничить пусковой ток до допускаемого для питающей системы.
2) Уменьшение электродинамических усилий в обмотках двигателя.
Уменьшение толчков тока в сети требуется обычно при пуске крупных асинхронных двигателей с короткозамкнутым ротором, если они получают питание от сравнительно маломощной питающей системы. Кроме того, для крупных двигателей заводы-изготовители машин не разрешают прямой пуск из-за чрезмерно больших электродинамических усилий в лобовых частях обмоток статора и ротора.
Причины механического характера ограничения момента двигателей могут быть самыми разнообразными, например предотвращение поломки или быстрого изнашивания передач, соскальзывания ремней со шкивов, буксования колес подвижных тележек, больших ускорений или замедлений, недопустимых для оборудования или людей в различных средствах передвижения и т. д. Иногда требуется уменьшить пусковой момент двигателей, даже небольших, для того чтобы смягчить удары в передачах и обеспечить плавное ускорение.
Во всех случаях, где условия работы не требуют форсированных ускорений или замедлений, желательно рассчитывать режимы на минимальные броски тока, а следовательно, и момента, сохраняя этим передачи механизма и двигатель.
Устройство плавного пуска двигателя
Для ограничения тока применяются пусковые реакторы, резисторы и автотрансформаторы, а также современные электронные устройства — софт-стартеры (устройства плавного пуска двигателей).
Напряжение на электродвигателе
Необходимо обратить внимание на то, что ограничение тока и момента с помощью устройств плавного пуска двигателей получается за счет усложнения схемы управления и удорожания установки, а потому должно применяться только там, где это обосновано.
Устройство плавного пуска «УПВ-1/2/5»
![]() | Основные функции Технические характеристики и условия эксплуатации Применение Схема подключения и габаритные размеры |
Основные функции
УПВ-1, УПВ-2, УПВ-5 предназначены для защиты электрооборудования от пускового тока, обеспечения режима «soft starter» при включении. УПВ представляет собой электронный аналог мощного регулируемого сопротивления, имеющего в начальный момент запуска большое сопротивление и плавно уменьшающегося до минимального значения при дальнейшем функционировании.
УПВ работает как на переменном, так и на постоянном токе, не «ломая» форму исходного напряжения питания.
Технические характеристики и условия эксплуатации
Параметр | Значение | |
Номинальное рабочее напряжение, В | 110/220 | |
Диапазон рабочего напряжения, В | 50-300 | |
Номинальный ток, А | УПВ-1 | 1 |
УПВ-2 | 2 | |
УПВ-5 | 5 | |
Предельные температурные условия, °С | -40…+55 | |
Минимальное количество рабочих циклов, шт | 1 000 000 |
Применение
Примером эффективного использования УПВ может послужить защита от пускового тока при различных нагрузках: лампы накаливания, электродвигатели переменного или постоянного тока (плавный пуск электродвигателя) и др. Причина частого перегорания ламп накаливания при включении — слабое сопротивление спирали. Использование УПВ для защиты ламп накаливания продлевает срок их службы в десятки раз.
При защите электродвигателя, работающего в повторно-кратковременном режиме, срок его службы продлевается от 5 до 10 раз, а также обеспечивается плавная передача крутящего момента во время пуска от вала двигателя к связанным с ним механизмам (например, редуктор), что способствует уменьшению износа и продлению срока службы механизма в целом.
Сравнение режима запуска коллекторного двигателя на номинальный ток 0.5 А:
![]() Без УПВ | ![]() С УПВ |
Схема подключения и габаритные размеры
Продукция
Мы применяем собственные технологии и технологии известных мировых производителей элеткроники.
Заказ
Оформить заказ на требуемое оборудование возможно со страниц сайта.
Поддержка
Оперативная консультационная и техническая помощь является неотъемлемой частью нашей работы.
© 2004 — 2020
Научно-производственное предприятие
«ТестЭлектро»
Приборы контроля высоковольтного оборудования. Механические испытательные системы.
Устройство плавного пуска или Soft-Starter
Soft-Starter (дословно мягкий пускатель) — устройство, призванное обеспечить плавный пуск асинхронного двигателя переменного тока с целью снижения пиковых нагрузок на двигатель и питающую сеть, в отечественной технической терминологии получившее название устройство плавного пуска (сокр. УПП).
Таким образом: УПП, устройство мягкого пуска, плавный пускатель, мягкий пускатель, реле плавного пуска, софт-стартер одного поля ягоды.
Откуда ноги растут или проблемы прямого пуска
Простота конструкции, низкая стоимость и высокая надёжность асинхронного электродвигателя с короткозамкнутым ротором* сделали его самым распространенным преобразователем электрической энергии в механическую.
Наряду с очевидными преимуществами, асинхронные электрические машины имеют ряд недостатков, самым существенным из которых является большой пусковой ток при прямом пуске (непосредственном подключении двигателя к питающей сети при помощи обычного пускателя).
Проявляется этот недостаток «проседанием» сети, когда при пуске электродвигателя отключаются автоматы, мерцают лампочки, и отключаются некоторые реле и контакторы, останавливается питающий генератор, иными словами, от сети требуется ток, который она обеспечить не может.
Причины высокого пускового тока кроются в физических принципах работы асинхронного двигателя, но это тема совсем другой статьи, отметим только, что кратность пускового тока может достигать 5. 7 от номинального рабочего тока, что интересно, высокий пусковой ток отнюдь не значит высокий пусковой момент двигателя.
Еще одна характерная проблема прямого пуска двигателя — это пуск «рывком», приводит на первый взгляд к незаметным последствиям — гидравлическим ударам, рывкам в механизме, проскальзыванию ремней, быстрому износу подшипников, буксованию колес подвижных тележек, большому износу и трению в редукторах.
*А вы знали, что конструкцию асинхронного электродвигателя с короткозамкнутым ротором разработал известный русский электротехник польско-русского происхождения Михаи́л О́сипович Доли́во-Доброво́льский и получил патент на нее 1889 году. Конструкция получилась настолько совершенной, что принципиально не изменилась по сей день!
Устройство плавного пуска или преобразователь частоты
Иногда путают два класса разных устройств, имеющих в своем активе схожий функционал.
- Устройства плавного пуска призваны снижать пусковые токи электродвигателей и пиковые потребляемые мощности в электрических сетях, преобразуют напряжение, подводимое к обмоткам электродвигателя при помощи специальных силовых ключей — симисторов (или встречно — параллельно включенных тиристоров).
- В то время как преобразователи частоты (ПЧ) преобразуют частоту и напряжение, подводимое к обмоткам электродвигателя, конечная цель этого преобразования плавная регулировка скорости вращения выходного вала двигателя.
Да, частотный преобразователь имеет опцию плавного пуска электродвигателя, но значительно более сложное устройство. В общих чертах преобразователь частоты состоит из диодного силового выпрямителя, LC-фильтра, инвертора на дорогостоящих IGBT модулях, системы управления ШИМ, системы автоматического регулирования, и имеет значительный математический вычислительный аппарат.
Так почему не стоит путать УПП и ПЧ? Хотя бы потому, что стоимость последнего минимум в 2-3 раза больше, а с ростом мощности устройства разница в стоимости возрастает. Например, преобразователь частоты INSTART мощностью 37кВт в 4 раза дороже устройства плавного пуска аналогичной мощности, ответ напрашивается сам: если цели регулирования скорости выходного вала двигателя не стоит, а обеспечить мягкий пуск и сохранность механизмов требуется, то зачем переплачивать.
Сводная таблица характеристик УПП, поставляемых компанией ООО «РусАвтоматизация»
Диапазон мощностей | Пусковое напряжение от Uн (ограничение пускового тока от Iн) | Время пуска / Время останова | Режим пуска | Режимы останова | |
INSTART SSI | 5,5. 600 кВт | 30. 70% (50. 500%) | 2. 60 с / 0. 60 с | Ограничение I; Рампа по U; Запуск рывком в режиме ограничения I; Запуск рывком в режиме рампы по U; Рампа по I; Режим двойного контура регулирования с ограничением I/U | Свободный выбег; Плавный останов |
AuCom CSX | 7,5. 110 кВт | 30. 70% (нет) | 2. 20 с / 2. 20 с | Рампа по U | Свободный выбег; Плавный останов |
AuCom CSX-i | 7,5. 110 кВт | нет (250. 450%) | 2. 20 с / 2. 20 с | Ограничение I; Рампа по I | Свободный выбег; Плавный останов |
AuCom EMX3 | 20. 615А | нет (100. 600%) | 1. 180 с / 0. 240 с | Ограничение I; Рампа по I; Адаптивный пуск; Запуск рывком | Свободный выбег; Плавный останов; Адаптивное торможение; Торможение постоянным током |
AuCom EMX4 | 20. 579А | нет (100. 600%) | 1. 180 с / 0. 240 с | Ограничение I; Рампа по I; Адаптивный пуск | Свободный выбег; Плавный останов; Адаптивное торможение |
ONI SFA | 5,5. 45кВт | 40. 70% (нет) | 1. 20 с / 1. 20 с | Рампа напряжения | Плавный останов |
Выбрать УПП наугад или не переплачивать?
Для эффективного применения устройства плавного пуска важно осуществить правильный выбор устройства по номиналу мощности, не забыв про характеристику нагрузки, различные задачи требуют различных пусковых характеристик и в общих чертах могут быть разделены на три категории:
- Нормальный режим работы требует значения пускового тока не более 3,5хIн, при этом время пуска может быть в диапазоне 10. 20 с;
- Тяжелый режим работы характеризуется наличием момента сопротивления на валу двигателя и требует значения пускового тока до 4,5хIн и время разгона до 30 с;
- Очень тяжелый режим работы характеризуется пусковым током до 5,5хIн и длительным временем разгона.
Из вышесказанного вытекают рекомендации по отраслевому применению некоторых моделей УПП:
Устройства плавного пуска серии SSI INSTART — по настоящему универсальная рабочая лошадка, имеет 6 режимов пуска двигателя, позволяет ограничить пусковой ток до 500% от номинального и временем плавного пуска до 60 секунд. INSTART SSI отлично подойдет для категории механизмов с тяжелым пуском дробилки (компрессоры, нагруженные конвейеры).
Кроме того, полноценная трехфазная схема регулирования, встроенные функции защиты нагрузки и коммуникационный интерфейс MODBUS RTU.
Устройства плавного пуска CSX, CSX-i предназначены для регулирования процессов пуска, разгона, торможения трехфазных асинхронных двигателей мощностью до 110 кВт. Модели отличаются функционалом. Первая оснащена функциями контроля напряжения по заданному времени (рампа напряжения), вторая дополнительно имеет встроенные функции защиты нагрузки и контролирует токовые нагрузки (рампа тока, ограничение тока). Коммуникационные интерфейсы доступны опционально.
CSX, CSX-i подходят для категорий механизмов с легким и нормальным режимом пуска (ненагруженный ленточный конвейер, центробежные насосы и вентиляторы).
Из плюсов, серии УПП CSX, CSX-i не требуют применения внешнего контактора, обе модели имеют встроенный шунтирующий контактор.
Устройства плавного пуска EMX3, EMX4 как два брата близнеца мало чем отличаются друг от друга, можно лишь сказать, что EMX4 новая модель, разработанная на основе EMX3, имеет еще более компактный корпус, обладает новыми функциями управления и защиты, а также дополнена новой конструктивной особенностью — использованием встраиваемых плат расширения.
Оба устройства имеют фантастические показатели ограничения пускового тока до 600% от номинального и время разгона до 180 секунд. Устройства с такими характеристиками целесообразно применять для категорий механизмов с очень тяжелым режимом пуска, таким как молотковая или шаровая мельница.
ONI SFA компактное и лаконичное УПП включает модельный ряд до 45кВт. Панель управления поражает своей простотой, всего 3 регулятора не заставят вас долго разбираться в настройках. ONI SFA идеально подойдет для легких нагрузок, таких как центробежные насосы, различные миксеры, сверлильные и токарные станки. Имеет встроенный шунтирующий контактор.
Применение устройства плавного пуска позволяет устранить проблему «проседания» в питающей электрической сети, уменьшить механические ударные воздействия на двигатель и приводной механизм, исключить гидравлические удары, повысив надежность производственных циклов и продлив срок службы основного производственного фонда предприятия.
Данная статья носит исключительно ознакомительный характер. Обратитесь к специалистам компании ООО «РусАвтоматизация» для подбора устройства плавного пуска применительно к вашей категории производственного оборудования.
Источник: Компания «РусАвтоматизация»
Плавный пуск электродвигателя
Плавный пуск предназначен для выполнения запуска и дальнейшего разгона, торможения и остановки высоковольтных электродвигателей синхронного и асинхронного типа, мощностью более 10 кВт, а также для сохранения и повышения их эксплуатационных качеств.
Необходимость плавного пуска
Традиционное использование прямого пуска для электродвигателя высокого напряжения, чревато резкими просадками напряжения в электрической сети.
Так, многократный бросок пускового тока, способствует созданию ударного электромагнитного момента, передаваемого по валу двигателя на редуктор и всю рабочую машину.
В обмотке статора создаются значительные динамические усилия, которые вызывают дефекты в виде смещения листов друг относительно друга, что чревато повреждением изоляции и приводят к капитальному ремонту двигателя.
В результате частых прямых пусков, как следствие, происходят повреждения редукторов и пробой изоляции обмоток.
Достаточно часто происходит обгорание выводов в «борно» (клеммах) электродвигателя и повреждение соединений между катушками обмоток двигателя.
Механические части агрегата быстро изнашиваются. Все эти неисправности заставляют выполнять узлы механизмов с высоким запасом прочности.
Принцип действия и особенности электронного плавного пуска
Действие плавного пуска основано на использовании принципа управления изменением фазового угла открытия тиристоров. Устройство работает с использованием высоковольтных тиристоров, подключенных встречно-параллельно, с током от 350 до 2600А. Каждой фазе соответствует тиристор положительного и отрицательного полупериода.
Тиристоры плавно увеличивают напряжение электродвигателя. Ток в третьей фазе, без управления, равен сумме токов фаз, находящихся под управлением. После разгона двигателя, тиристоры могут управляться, а напряжение подходит к выводам двигателя. Во время работы проводить регулировку напряжения необязательно, выполняется шунтирование тиристоров с помощь байпасных контактов.
Обеспечение обратной связи, предназначенной к управлению пусковым током и для защиты электродвигателя и электроустановки, выполняется трансформаторами тока.
Фазовая отсечка служит для получения величины напряжения наиболее эффективной для питания двигателя во время пуска. Фазовая отсечка настраивается в зависимости от величины напряжения до момента пуска и до расчетного напряжения электрического двигателя при помощи регулировок.
Значение силы тока электрической машины пропорционально напряжению, питающему ее. Этим достигается уменьшение величины пускового тока в зависимости от уменьшения, подаваемого к электродвигателю питающего напряжения.
Момент вращения электродвигателя по отношению к величине напряжения уменьшается пропорционально квадрату напряжения.
Возможности плавного пуска
Для УПП характерно сохранение параметров электрооборудования (напряжение, ток, вращающий момент) в момент пуска в безопасных пределах.
Плавный или безударный пуск исключает высокие ударные пусковые токи, способствует увеличению надежности оборудования. Снятие ограничения на число запусков и остановов электродвигателей высокого напряжения позволяет рационально использовать электрооборудование с учетом тарифа на электроэнергию.
В технологическом плане, плавный пуск дает возможность получить значительный выигрыш. Так, например, УПП используют на месторождениях нефтедобычи, например, на (КНС) кустовых насосных станциях, для запуска двигателей насосных агрегатов, применяемых для закачки воды в пласт. Благодаря отсутствию пусковых ограничений, УПП помогает поддерживать необходимое пластовое давление и позволяет максимально эффективно распределить нагрузки между насосными установками, внутри станции и со смежными КНС. Также плавный пуск используется для запуска асинхронных двигателей на ДНС (дожимная насосная станция), для подачи откачиваемой нефти в основной нефтепровод.
Преимущества плавного пуска
1. Плавный пуск рекомендован для запуска высоковольтных синхронных и некоторых типов асинхронных электродвигателей большой мощности. Это машины, которые обладают значительными статическими нагрузками и большой инерционной скоростью останова.
2. УПП обеспечивает частотный запуск двигателя до синхронной скорости с определенными значениями пускового времени и с ограничением тока с уровнем менее 1,5 от номинального тока электродвигателя.
3. Плавный пуск осуществляет синхронизацию и включение электродвигателя в сеть.
4. Наличие в УПП «умного» блока управления дает возможность осуществлять автоматическую работу оборудования. Цифровые каналы связи передают сведения о настоящем состоянии агрегата на высший уровень системы управления технологией рабочего процесса.
В управлении применяются микроконтроллерные системы. Для современных систем плавного пуска характерно адаптивное управление ускорением. Чтобы это было возможно, системы автоматики производят анализ предыдущих процессов запуска и остановки агрегата, после чего УПП автоматически адаптирует процесс к избранному профилю, соответственно назначению.
Важно знать и учитывать необходимое время пуска так называемый коэффициент трудности пуска. Чем больше время пуска, тем выше нагрев тиристоров, которые рассчитаны на длительный режим работы при нормальном пуске, определенной температуре окружающего воздуха (до 40оС) и заданном количестве включений.
Диапазон использования УПП.
В рамках использования устройства плавного пуска находятся самые разнообразные функции.
1. Осуществляя пуск и остановку двигателя, используется нелинейный способ, им можно управлять увеличением напряжения, в этом случае кривая напряжения будет зависеть от потребляемой нагрузки.
2. Быстрый останов двигателя осуществляется с помощью постоянного тока, он используется в функции торможения.
3. Максимальный импульсный момент способствует плавному разгону электрического двигателя.
Схемы пуска асинхронного электродвигателя
Асинхронные электродвигатели с короткозамкнутым ротором применяются в строительстве, металлообработке, химической, пищевой и других промышленных отраслях. Особенно широко используются трехфазные двигатели. Для их работы не требуются дополнительные пусковые обмотки. Однако отсутствие дополнительной обмотки приводит к тому, что в момент пуска на статоре возникает высокий пусковой ток, который может стать причиной просадки напряжения и, как следствие, перегрузки линии электропитания, короткого замыкания и других нештатных ситуаций.
Существует несколько схем запуска асинхронных двигателей — их выбирают в соответствии с особенностями и спецификой промышленного применения. Вкратце расскажем об этих схемах, за подробностями сюда https://tehprivod.su/.
Прямой пуск
Прямой пуск возможен для электродвигателей малой мощности. Значение пускового тока, превышающее номинальное в 7 раз, не является для них проблемой.
«Ахиллесова пята» прямого пуска — одновременное подключение нескольких двигателей к электрической подстанции малой мощности. При добавлении к сети еще одного двигателя просадка напряжения может быть критической и повлечь за собой остановку работающего оборудования.
Во избежание описанной ситуации время перегрузки сети должно быть максимально снижено. Как этого достичь? По возможности запускать электродвигатель с минимальной нагрузкой. Если оборудование предполагает длительные просадки при прямом пуске, они должны учитываться еще на стадии проектирования промышленных электросетей.
Плавный пуск
Снизить значение пускового тока можно, понизив напряжение на статоре при запуске электродвигателя. В процессе разгона его значение можно постепенно увеличивать.
Реостатный способ плавного пуска электродвигателя привлекает простотой и дешевизной, но сегодня он устарел и серьезно проигрывает устройствам плавного пуска.
Недостатки реостатной схемы очевидны:
Ее проблематично автоматизировать, усовершенствовав контроль и упростив управление.
Пуск электродвигателя под нагрузкой усложняется — крутящий момент снижается в 4 раза. Как следствие, двигателю требуется больше времени, чтобы набрать рабочую скорость.
Устройства плавного пуска, также известные как софтстартеры, лишены перечисленных недостатков. Они компактны и функциональны. Простейшие УПП обеспечивают:
Плавный пуск, разгон и остановку двигателя.
Возможность настройки и регулирования рабочих параметров.
Многоуровневую защиту электродвигателя.
Постоянное ограничение тока.
Пуск по схеме «звезда-треугольник»
Этот вариант привлекает простотой и дешевизной. Он предполагает соединение обмоток «звездой» при запуске, а в процессе разгона электродвигателя – перекоммутацию обмоток в нормальное положение «треугольник».
Напряжение на обмотке уменьшается почти в 2 раза, но в случае отказа одного из контакторов, управляемых вручную, пострадает вся коммутация. Как следствие, существенно упадет мощность двигателя, возникнут проблемы с его запуском.
Важно учитывать и уменьшающийся крутящий момент при соединении обмоток по схеме «звезда», вследствие которого запуск электропривода под нагрузкой может быть затруднен.
Пуск с преобразователем частоты
Пуск асинхронных электродвигателей с помощью частотных преобразователей привлекает гибкостью управления. Электронное управление современных ПЧ обеспечивает мягкий пуск и дальнейшую плавную регулировку работы электропривода. При этом соотношение напряжения и частоты придерживается строго заданных параметров.
Преимущество частотных преобразователей в том, что потребление электроэнергии сокращается почти на 50%. Как следствие, сокращаются текущие эксплуатационные расходы предприятия, снижается себестоимость производства.
Устройства плавного пуска
Одной из наиболее популярных категорий товаров, которые предлагает наша компания, являются устройства плавного пуска двигателей. Эти компактные и удобные в эксплуатации приборы предназначены для работы с 3-фазными асинхронными электродвигателями переменного тока. Основная задача, которую выполняет устройство плавного пуска двигателя – плавный разгон агрегата путем постепенного увеличения напряжения до номинальных значений при неизменной выходной частоте.
Дело в том, что при использовании прямого пуска, в момент подачи напряжения на двигатель, возникающий ток многократно превышает номинальное значение, вызывая просадку напряжения в сети. Это может привести ко многим неприятным последствиям:
- выходу из строя электроприборов, включенных в цепь;
- электродинамическому разрушению обмотки двигателя;
- преждевременному износу силовых деталей агрегата.
Всех этих неприятностей можно избежать, если купить устройство плавного пуска электродвигателей. После запуска оборудования, этот прибор подаёт на него пониженное напряжение, а затем медленно повышает показатель до рабочего режима. Точно так же высоковольтные устройства плавного пуска асинхронных двигателей могут и останавливать агрегаты, существенно увеличивая срок их службы.
Преимущества использования устройств плавного пуска электродвигателя в промышленности
Приобретение высоковольтных устройств плавного пуска оправдано для всех промышленных предприятий, использующих на производстве станки и другое оборудование большой мощности.
Применять УПП можно для следующих целей:
- плавный пуск транспортерных конвейеров;
- мягкий старт насосов со снижением гидравлического удара;
- бесконтактный пуск оборудования во взрывоопасной среде;
- плавное включение освещения и отопления;
- контроль движения (лента транспортера, лифтовые двери).
Результаты, которые достигаются благодаря устройствам плавного пуска асинхронных двигателей, выражаются в следующем:
- уменьшение износа двигателей;
- снижение механических нагрузок;
- исключение перепадов напряжения в сети;
- рациональное использование ресурса механизмов;
- автоматическое управление рабочим процессом, мониторинг, диспетчеризация;
- достижение плавности работы в системах с частыми сменами ритма;
- увеличение срока эксплуатации технологического оборудования.
Благодаря большому количеству производителей, цена устройства плавного пуска зависит исключительно от технических характеристик прибора.
Преимущества УПП, реализуемых нашей компанией, заключаются в следующем:
- длительный срок эксплуатации приборов;
- пониженный уровень шума;
- низкое потребление электричества;
- надежность и долговечность.
Купить устройства плавного пуска в Санкт-Петербурге, Москве и Екатеринбурге Вы можете на нашем сайте.
Аналогичные задачи по снижению электрических и механических нагрузок на трехфазный двигатель и его привод выполняют устройства плавного торможения. Они призваны обеспечить плавный режим работы двигателя при торможении путем ограничения тормозного тока.
Каталог ООО «Инвертор» представляет устройства плавного пуска и торможения двигателей в широком ассортименте и ценовом диапазоне. Специалисты компании всегда готовы предоставить квалифицированную консультацию по каждому устройству и подобрать оптимальную модель в Санкт-Петербурге, Москве и Екатеринбурге с учетом потребностей конкретного оборудования.
Важно помнить, например, что устройство плавного пуска безупречно справится с ограничением пускового тока и пускового момента, с защитой от перегрузок, но не позволит контролировать обороты.
В случаях, когда требуется более широкий диапазон полномочий управляющего устройства, необходимо купить частотный преобразователь для плавного пуска электродвигателя и последующей стабилизации процесса.